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Abstract

Heavy ion fusion requires injection, transport and acceleration of high current beams.
Detailed simulation of such beams requires fully self-consistent space charge fields
and three dimensions. Our code, WARP3D, has been developed for this purpose. It
is a particle-in-cell plasma simulation code optimized to work within the framework
of an accelerator’s “lattice” of accelerating, focusing, and bending elements. The
code has been used to study several test problems and for simulations and design
of experiments. Two applications presented here are drift compression experiments
performed on the MBE-4 facility at LBL and design of the electro-static quadrupole
injector for the proposed ILSE facility.

With aggressive drift compression on MBE-4, anomalous emittance growth was
observed. Simulations were carried out to examine possible causes. The conclusions
of those simulations were that essentially all of the emittance growth is the result of
external forces on the beam and is not the result of internal beam space-charge fields.
The dominant external forces are the dodecapole component of focusing fields, the
image forces on the surrounding pipe and conductors, and the octopole fields that
result from the structure of the quadrupole focusing elements.

The goal of the design of the electro-static quadrupole injector is to produce a
beam of as low emittance as possible. The simulations show that the dominant
effects that increase the emittance are the non-linear octopole fields and the energy

effect (fields in the axial direction that are off-axis). Injectors were designed that



minimized the beam envelope in order to reduce the effect of the non-linear fields.
Some alterations to the quadrupole structure that reduce the non-linear fields further
were examined. Finally, comparisons were done with a scaled experiment. These

resulted in very good agreement.
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Chapter 1

Introduction

Creating fusion in the laboratory and ultimately in a power generating plant has
long been a goal of scientists worldwide. In the inertial confinement fusion, ICF,
approach, a pellet of fusionable fuels is compressed to a high density by impinging
laser beams. If the density and the temperature are high enough, the fuel will begin
to fuse, releasing energy. If the density is maintained, the fuel will be heated enough
to be completely burned. In 1974, Maschke proposed beams of high energy heavy
ions as an alternative driver for ICF[1]. That lead to the initiation of the heavy ion
fusion (HIF) program.

The use of particle beams to compress the fusible targets offers advantages. Much
of the technology needed to produce the particle beams has already been developed.
Experimental and theoretical scientists have gained much experience in building large
scale particle accelerators for use in high-energy particle physics. Particle accelerators
have long lifetimes. In a reasonable lifetime of a power generator, the driver will have
to produce on the order of 10° shots. Particle accelerators also have high repetition
rates and an HIF driver would have no difficulty in producing the required several
shots per second. Among other advantages of particle beams are the final focusing
lenses. These focus the beam down onto the target in the reaction chamber. Lasers
would require a physical lens or a mirror to effect the final focus. This would be

subject to degradation from the debris produced in the fusion reaction. Particle
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beams are focused by fields which are produced by conductors outside of the line of
sight from the entrance to the reaction chamber so there would be no physical lens
that could be degraded.

This leaves the choice of the ion mass. With indirectly driven targets, the beam
strikes a radiator which then gives off X-rays which then strike the fuel pellet itself.
When the particle beam strikes the target, it must react with the radiator only. As
much of the beam energy as possible needs to be deposited in the radiator, and the
X-rays need to be able to escape from it. Thus, penetration depth of the beam ions
into the radiator is critical. Light ions have a larger penetration depth at a given
energy than heavy ions. In order to prevent the light ions from heating too much
matter and so wasting energy, they need to have fairly low energy. But then, to
obtain enough energy to compress the target, very high beam current densities would
be required. Heavy ions can have much higher energies, several to ten GeV, and not
penetrate too far. The currents needed are much lower, on the order of kiloAmperes.
These lower currents are much easier to produce and control. Also, with light ions,
the large amount of charge deposited on the target will produce significant electric
fields, leading to possible difficulties.

The typical scenario for a heavy ion fusion driver begins with a number of injectors,
on the order of 10 to 100, that produce long, on the order of 20 us pulse length,
beams with an energy of several MeV and a current of about an Ampere. These
beams are combined into a smaller number of beams and accelerated in either a linac
or a circular accelerator, both using induction accelerating modules. To produce a
higher line charge density, the beams are compressed axially. This is accomplished
by imparting to the beam a head-to-tail energy, or velocity, gradient. The beam is
there by shortened, producing a higher line charge density. The beam is compressed
down to nearly a 10 nanosecond pulse length and up to several thousand Amperes.
The beam is then bent to go into the reaction chamber and sent through the final
focus. All in all, the beam will be transported over at least several kilometers.

The target is of order a few centimeters in diameter. In order for it to be possible
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to focus the beam down onto the target, a low transverse beam temperature, or
emittance, must be maintained. (Emittance is the measure of phase space area and
is described in more detail shortly.) This represents the major difficulty in the design
of a driver. The various manipulations of the beam and the long distance over which
the beam is transported all tend to increase the transverse temperature. Accurate
and detailed analysis is necessary in the design of a driver in order to minimize the
growth of emittance.

The goal of this thesis research was to develop a three dimensional code to simu-
late the transport and acceleration of high current beams. A three-dimensional code
was needed since many of the beam manipulations are inherently three-dimensional.
The injection requires transverse focusing (confinement) of the beam, possibly with
alternating gradient (AG), or quadrupole, lenses and acceleration of the beam. Beam
merging involves beams that do not travel parallel to the machine centerline. Lon-
gitudinal compression involves the axial gradients and the expansion of the beam
transversely within an AG focusing system. The interaction of the transverse and
longitudinal physics is important in the transport through an AG focusing system.

In order to simulate high current beams correctly, the beam self-fields must be
included. In a driver scale accelerator, the self-fields from the space-charge domi-
nate over the beam temperature; nearly all of the focusing is counteracted by the
electrostatic repulsion of the beam particles. The particle-in-cell method (commonly
used to simulate plasmas) was chosen. A small number of particles (compared to
the number of real particles) are used to represent the beam and the self-fields are
calculated self-consistently from them. This method was chosen in part since with it
all of the beam physics can be calculated from first principles. It is also faster than
other particle methods, such as the particle-particle method. Furthermore, with its
extensive use in plasma simulations, the method has become very well understood.

The code that was developed was used in several applications: long time transport
of a beam in an alternating gradient focusing channel, comparison of two types of

beam pipes and their image charges, simulation of drift compression on MBE-4[2], and
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simulation and design of the electrostatic quadrupole injector for the induction linac
systems experiment (ILSE)[3]. These applications both validated the code against

experiment and demonstrated the unique capabilities and the utility of the code.

1.1 Conventions

In a straight system, the coordinates are a right handed Cartesian system with z on
the horizontal, y on the vertical, and z along the centerline of the beam. The beam
is always assumed to move in the positive z direction. Derivatives with respect to
time are for some purposes converted into derivatives with respect to z by division of
the average axial velocity of the beam. Derivatives with respect to z are denoted by

primes, and with respect to time are denoted by dots. For example,

, dr dedlt =z (1.1)
.T = = —— = — .
dz dtdz v,
In any finite differenced equations, superscripts refer to time steps and subscripts

refer to grid cell index, except as noted.

1.2 Emittance

Emittance, ¢, is the measure of the area of the beam in “trace” space, or (z,z’) space,
and is related to the transverse temperature. The normalized emittance, ¢y, is defined

as the area of the beam in the canonical phase space (z,p,) and is related to emittance
1

1-82
tic terms and ¢ is the speed of light in a vacuum.) In the Kapchinski-Vladimirskij

are the usual relativis-

via the beam axial velocity, ey = yfBc. (8 = = and v =

(KV)[4] distribution, the only known equilibrium distribution in an alternating gra-
dient accelerator, the beam uniformly fills an ellipse in phase space. The emittance
is given by the product of the major and minor radii of that ellipse and =, which is
equivalent to the area. For beams that are not uniform or do not form an ellipse,

emittance is defined alternatively as a root mean square (RMS) “edge” emittance.

s = 4/((@ — (@))2) (@' = (2))2) = {(& = (2))(a’ — (2')))? (1.2)
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Here () means an average over the distribution. The units of ey are commonly “7-
meter-radians” or “r-mm-mr”, with the “x” explicitly included to show that it has
not been absorbed into the numerical value. For a KV beam, the RMS expression is
equivalent to the phase space area. The RMS emittance is sometimes a pessimistic
measure. Phase space may be bent and distorted in a way that can be “undone” so the
true phase space area has not changed, but by the RMS definition, the emittance will
have increased. If such distortions were undone, the RMS emittance would decrease.
True emittance, in general, will only decrease under very unusual circumstances.
The Liouville theorem states that on a microscopic scale the occupied phase space
area remains constant. When all of the forces are linear, uniformly filled ellipses map
into ellipses, and the emittance remains constant as well. When non-linear forces
are present, the emittance can increase or decrease (the system is time-reversible).
The possible non-linear forces include (among others) the self-fields of a non-uniform
beam, fields from imperfect focusing structures, and image fields on the surrounding

conductor.

1.3 Focusing Fields

The focusing fields in an alternating gradient focusing system consist of quadrupole
fields that focus the beam in one direction and defocus it in the other. They are
generally arranged so that each transverse direction is alternately focused and de-
focused. This is referred to as the “FODQO” lattice, for focusing, drift, defocusing,
drift (“O” stands for open, for an opening between conductors, or zero, for zero fields
in the drift regions). The unit is repeated. The fields can either be electrostatic or

magnetic. The quadrupole potential in the electrostatic case has the form
¢ = do(a” —y?) = dor’ cos 20, (1.3)

where x and y or r and # are the transverse coordinates.

With imperfect electrostatic focusing elements, non-linear fields may be present.
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The potential is written in multipole components as
(r,0,z) = Z bz Z Via(z )¥ cos(16) (1.4)
k>1>0 k>l
where Vj;(z) are the field strengths, and R is the quadrupole aperture, and k — [ is
even. The quadrupole field is given by ¢4 2(2).
The requirements on k and [ can be seen by putting the summation back into the

Laplace equation in cylindrical coordinates.

. 1(? (9 1 02 (32

After grouping like terms in r and (9, the resulting expression is

Pizo 7 cos(10)(—1%)Vou+
Yo T Leos(10)(1 — I2)Vi 1+ (1.6)
Sizo T cos(10) (= P)Viy + Vi, | = 0.
To keep V2@ well behaved at r = 0, V5, must vanish for all / > 0 and V;; must vanish
for all [ except [ = 1. Requiring each term in the sum over k£ to be zero independently

gives a recursion relation for Vj ;.
Vi = VLo /(P = k) (1.7)

So, since Vg is zero for [ > 0, Vi, with k even, is zero for all k& < [. Vj;, with &
even, and hence Vj; with k£ even and £ > [, is not zero since both the numerator
and denominator on the right hand side of the recursion relation vanish, leaving Vj
arbitrary. But the Vj; with k& even and [ odd are zero for & > [ since at no place in
the recursion does the denominator [> — k% vanish. Starting with the necessity that
Vi, must vanish for all / except [ = 1, the terms with £ < [ and £ — [ odd vanish
similarly. The remaining nonzero terms all have £ > [ > 0 and k£ — [ even.

With quadrupole, or two plane, symmetry, neither £ nor [ will be odd since
d(z,y,z) = ¢(—x,y,z). When lis odd, ¢(z,y,z) = —¢(—=z,y, 2).

Hereafter, the comma in the subscript of V;; will be removed and it will be written
as V. The only terms which are significant and are studied have both k and [ less

then ten so there will be no confusion with the comma removed.
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The Code



Chapter 2

Methods Used in WARP3d

The basis of the WARP code is the electrostatic particle-in-cell (PIC) method[5]. This
method uses the Lorentz equation of motion to advance in time macro-particles, which
represent many real particles. The only self-field considered is the electrostatic field.
This is calculated self-consistently on a three dimensional, rectangular mesh that
holds a discrete representation of the charge density and the electrostatic potential.
The charge density is calculated from the particles via a linear interpolation of the
macro-particles onto the mesh. Three dimensional fast Fourier transforms are used to
solve for the electrostatic potential from the charge density using Poisson’s equation.
The macro-particles are advanced in time using a combination of the “leap frog”
and “isochronous leap frog” methods[7]. Each time step goes through the following

pattern:

1. The charge of the macro-particles is deposited onto the mesh, using trilinear

weighting.
2. The electrostatic potential is calculated.
3. The electric fields are interpolated from the mesh to the macro-particles.

4. The velocity and then the position of the macro-particles are advanced.
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Hereafter, the term “particle” should be interpreted to mean macro-particle unless
explicitly stated otherwise.

For an accelerator code, additions to the usual PIC method were needed. These
include external fields like the focusing, bending and accelerating fields, a lattice
description, accelerator-specific diagnostics, and conductors within the field mesh.
Various techniques are used in the code for optimization.

One note on the “leap frog” method is the splitting of steps. In the usual method,
the velocities are known at half integral time steps while the positions are known at
integral time steps. The time discrepancy can lead to errors when diagnostic plots are
made or when moments are calculated. When diagnostics are made, typically every
five or ten timesteps, the velocity advance is split into two steps and an “isochronous”
advance is used. The first half step synchronizes (in time) the velocity with the
position. The diagnostics can then be done. The second half step of the velocity
advance is then done at the beginning of the next timestep. When no diagnostics are
being taken, the code uses the unsplit method for efficiency.

I had my hand in the development of nearly all parts of the code. A number
of the sections described in this thesis were developed and implemented entirely by
me. (By implemented, [ mean I wrote the fortran code.) These include the residence
corrections with acceleration, the moments calculations, and the sub-gridscale bound-
ary placement in the field solver. 1 developed all of the particle loader and injection
except the “cigar” beam loader which is based off of a colleague’s work, and the ran-
dom number generators which are extensions of what was obtained in the literature;
I implemented all of it. The capacity matrix and SOR field solver were taken from
the literature with several new extensions added by me and written in their entirety
by me. In the remaining sections of code described in this thesis I played a significant

role.
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2.1 Particles

The following sections describe the handling of particles.

2.1.1 Residence Corrections

It is desirable to take as few, and therefore as large, steps as is possible. In general, for
a travelling beam in a lattice of hard-edged elements, the limiting factor in the size of
the step is getting the correct impulses from the elements. Since the particles all do
not step at the same axial positions, some may “land inside” a lattice element on more
steps than others, leaving them with different impulses. Small steps would be needed
to decrease the errors from this effect. We get around this by performing “residence
corrections”, that is, correcting the forces applied from each element by scaling them
by the fraction of the timestep the particle spent inside the element. This greatly
relieves the timestep size constraint, reducing the number of steps needed within the
elements to typically ten or fewer.

Residence correction may be done for only the particle velocity, or for both the
position and velocity. For the hard-edged focusing and bending elements, which pri-
marily affect the transverse velocity and position, only the correction to the transverse
velocity is required for sufficient accuracy. No correction is needed in the axial veloc-
ity and position and the correction in the transverse position is small. The correction
scales as the time step size, At, squared times the transverse velocity which is small
compared to the axial velocity. The acceleration lattice requires a correction on the
axial position of the particle as well as a correction to the velocity.

Application of the correction to the velocity only is the easier case. It is done
when the velocity would be affected by the element, that is, if the particle would
enter or leave the element between the time levels n — 1/2 and n + 1/2 (the velocity
is usually known only at half integral steps). The velocity correction consists of an
adjustment to the applied field according to the fraction of the time step that was

spent within the element. This fraction is calculated as a ratio of the axial distance
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travelled within the element to the axial distance travelled during the time step. The
ratio of distances can be used since the axial velocity is nearly a constant during
the time step. For a full time step, the axial distance travelled is given by vpeamAt
and is centered about the particle’s position. This distance represents the range over
which the forces are integrated. For the steps during which diagnostics are taken,
this distance is given by %vbeamAt, covering the range appropriate to the part of the
advance being done. Define At (for “left” since our beams usually travel left-to-right)
as the change in time from the most recent time that the velocity is known to the
current time. This will be either 0 or —%At depending on whether or not the velocity
is synchronized with the position. Define At, as the change in time from the current
time to the time the velocity will be known. This will be either 0 or %At, depending
of whether or not the velocity will be synchronized with the current time. The lower

end of the range of position is then given by

2=z, + v, AL, (2.1)
and the upper end is given by

z, = z, + v, AL, (2.2)

where z, is the current axial position of the particle and v, is the most recent axial
velocity of the particle. When the particle enters the element, the fraction of the step

in the element is given by

Zy — Zentrance
= - 2.3
/ v, (At, — Aty)’ (2:3)
and when it leaves, by
Zexit — <l

I Ay .

where Zeptrance and zege are the positions of the entrance and exit of the element
respectively. The applied field is then multiplied by this fraction.

Since the velocity lags behind the position by one half a time step, the effect of
the element will also lag. It can happen that the particle will enter the element on the

step before its velocity is affected. Likewise, a particle can have exited the element
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and on the next step have its velocity still affected by it. The total amount that each
of the particles are affected must still be the same.

When there is axial acceleration, the residence correction becomes much more
complicated. The corrections needed for the position and the end points of the velocity
range are more difficult to determine since the axial velocity changes significantly over
the course of the step. To calculate the residence corrections for the position, the
position at the end of the step is first calculated by integrating the equation of motion
over one time step starting with the known current values. The velocity v"*7 s also
calculated from the equation of motion. The calculated position is then compared to
what the position would be if advanced with leap frog using the calculated velocity,
v"*+2. The difference gives the necessary correction. The calculations are estimations
since only the accelerating field is included; all other forces, in particular the space

charge forces, are ignored.

On entering the gap, the “exact” position at the end of the next step is

* At 6
2 — g / vt dt + /{5 (v” + a,(t — —Z)) dt, (2.5)
0 2z (oM

where z and v are the position and velocity, n is the time level, 6, is the distance

between the current position and the entrance of the acceleration gap, zeptrance — 2™,

and a, = L,-- is the acceleration from the gap. This evaluates to

n n n 1 62’ ’
2" = 2 " AL+ §agAt2 (1 — v”At) } (2.6)

-

Here, v™ is the same as v"~2 since no acceleration occurs before the particle’s z
coordinate reaches the gap.

The calculation of the velocity depends on when the particle enters the gap. Figure
2.1 makes the following explanation more clear. If the particle enters the gap in the
first half of the position advance step, case #1, the velocity v"+3 will be affected by
the gap. The velocity is then

"t

NI

1 1 0,
= vn—g —|— agAt (5 — 71&) . (27)
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(1) o ° o °
(2) o ° o °
i— % i i+ 3 i+ 1

Figure 2.1: Diagram of a particle entering a gap. The solid circle are the times
when the position is known, empty circles are when the velocities are known, 2 is
the current time level. In 1), the particle is entering the gap in the first half of the
position advance step; in 2), the particle is entering in the second half of the position
advance step.

In case #2, the velocity is unaffected since the particle enters the gap in the second
half of the position advance step, so vt = pnTa, Now, if we use equation 2.7 to

calculate z"*! with leap frog, we have then for case #1

+1 nti
z" =z" 4+ "2 AL,

="+ "5 AL + agAt2 <% — b ) .

V" T2 AL

(2.8)

The difference of this with equation 2.6 gives the correction

1 5\’
Zcorr — §ag (vnj) . (29)

For case #2, when the particle enters the gap in the second half of the step, the next

position would be given by

M=y v”_%At, (2.10)
so the correction would be
1 5\’
Zeorr = =Gy | At — — ] . (2.11)
2 ptT2

When the particle leaves, a similar integration is done:

At

bt
L — g / (v" + ayt)dt + v, dt (2.12)
0 bt
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where ¢, is time spent in the gap which is assumed to be less than At and v, is the
velocity at the time of exit from the gap. The time spent in the gap, é;, can be

calculated from the distance in the gap.
n n 1 2
Zexit — 2" = 0" + 5%515- (2.13)
This quadratic equation has the solution

5= L [((v”)2 20y (zeic — 2)) 7 — v”] | (2.14)

Ag

The velocity at the exit of the gap is given by v, = v" + a,6;. The velocity, v™, in
terms of the known velocity at time level n — 1/2, is given by v" = VT 4 %agAt.

With all of this, the position at the next time level, equation 2.12, reduces to
1
= 2 TIAL Saa(AL + 26,01 — 57). (2.15)

For case #1, when the particle exits the gap in the first half of the step, the velocity
is given by
1
ptE = 4 ay(5AL+6,) (2.16)

By the same method as before, this gives as the position correction

1 .
Zeorr = _§ag5t2- (217)

For case #2, when the particle exits in the second half, the velocity is
p"tE = "3 + a,At, (2.18)
so the correction would be
1 2
Zeorr = —§ag(At — 6:)". (2.19)

In the limit 6; — 0, as 2™ — Zzegi, Zeorr fOT case #1 goes to zero as expected since the
position advance is completely outside of the gap. As 6; — At, zcopn for case #2 goes

to zero as expected since the position advance is completely inside the gap.
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The calculation of the velocity correction is made difficult with acceleration be-
cause the axial velocity changes significantly over the time step. This affects the
fraction of the step spent in the element. Also, the fraction of the step in the element
must strictly be calculated as a ratio of the time spent in the element to the step
length, At. For the calculation of the ratio, the velocity at the same time level as
the position, v", is required. This includes the possibility that the entrance or exit
from the gap will be crossed in the half step between n — % and n. There are four

possible cases. The first is that the half step is completely outside a gap. In this case,

™ is the same as v"~%. The second case is when the half step is entirely within the

1
n—3

gap. The relation here is v™ = v + %agAt. The other two cases are when either

an entrance or an exit is crossed. Simple derivations give the result

2

v = I:(vn_%) + Qag(Zn - Zentrance):| ’ (220)

) (2.21)

on exit. The entrance is known to be crossed when it is within the range z; <

on entrance, and

N

1 1 1 1 1 2
i 3 (v”_5 + §GgAt + l(v”_5 + 5%At> — day(Zexit — Zn)]

Zentrance < 2. Here, z1 is given by z" — %v”_%At - %agAtQ. This is the distance
that would be travelled if the movement was completely in the gap. The exit is
known to be crossed when it is within the range z; < zey < 2", where 2, is given by
2" — %v”_%At. This is the distance travelled completely outside the gap.

Once v™ is known, the calculation of the time of entrance or exit from the gap
can be done. This then gives the time spent in the gap and the desired ratio. There
are six cases here. If the step is completely outside, of course, the ratio is zero, and if
the step is completely inside, the ratio is one. There are two cases for the entrance.
One when the entrance is in the first half of the step, the second when the entrance
is in the second half of the step. There are the same two cases for the exit. To make

the coding simpler, the first two cases are included implicitly by use of max and min

functions. That is, if the ratio calculated is less the zero, then it is zero, and if is
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calculated to greater than one, it is then one. The remaining four are shown. When

n
4 S Zentrances

. 1 Zn — Zentrance
tio = — 4 — = 0] . 2.22
ratio = max [2 + A , ] ( )

When zepirance < 2" < Zmia, Where z,;q is the position of the middle of the gap,

(1 - Zag(zn(;njzmme))% = 1] ,1] . (2.23)

(1 | 20y (e ._Zn))% - 1] ,1} . (2.24)

) 1 "
ratlio = min | — —

2 a,At

g

When zpq < 2" < Zexits

ratio = min

o
2

At last, when zeq < 27,

1 2" — 2y
S 0] (2.25)

ratio = max |- — ————
[ vr At

Here, min|[] and max[| have the usual meanings. As with the position correction, all of
the square roots can be removed by making the approximation that the acceleration
per step is small, agAt/v”_% < 1.

For purposes of precision in the calculation in the code, expressions of the form
(a* + :1:)% — a, where z < a, are rearranged. The numerator and denominator are
multiplied by the conjugate (a® + :1:)% + a. This changes the expression to the form

S — (2.26)
(a2 4+ 2)% + a.
This removes the subtraction of similar numbers which is prone to errors.
The algorithm was verified by using it to track particles in one dimension through

a finite length gap and comparing the results with the analytic answer. The results

were identical within the precision of the computer.

2.1.2 Particle Loader

In writing the particle loading routine, two issues had to be taken into consideration:
what distributions to model, and what kind of random or pseudo-random numbers

should be used. The random numbers are discussed first.
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It is desirable to load particles in a fashion that minimizes noise in the distribution
function. The noise is caused by clumping of particles and by voids, spaces with few
particles. Purely random and pseudo-random number generators tend to produce
distributions with significant noise. Two non-random “quiet start” number generators
were implemented. These generators produce numbers that are nearly uniformly
distributed but with a complex ordering.

The first is a higher dimensional generalization of the two-dimensional “Fibonacci”
generator. The numbers are chosen using modulus one of a factor times an index. In

three dimensions, this looks like

z = i/N —1/2N,

Ty = [ﬁ%&] mod 1, (2.27)

T3 = [%] mod 1, '
=1 N

?

where N is the total number of points and the ¢’s are numbers less than N. For two
dimensions, the optimum distribution is given when N is the Fibonacci number «,
and g3 is «,_1. For higher dimensions, there is no clear method for choosing good g¢
numbers. See reference [8] for empirically determined tables. Use of this generator is
discouraged as we had problems getting smooth enough distributions, and the lack of
a good method for determining ¢’s limits the use of the method, especially for large
N.

The second is a generalization of the two dimensional bit reversed method. The

first dimension is a steadily increasing number as above,

i/N +1/2N,
i =0, ,N—1,

5]

(2.28)

and the rest are given by converting ¢ to different bases, reversing the digits and
converting back to decimal. In two dimensions, the second dimension is found by
converting to binary, reversing the bits, and converting back to decimal. See table

2.1 for examples. A third dimension would be obtained by converting to base three,
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i | binary reversed decimal
0 0 .0 .0

1 1 1 5

2 10 .01 25

3 11 .11 75

4 100 .001 125

5 101 .101 625

6 110 .011 375

7 111 111 875

8 1000 .0001 0625

Table 2.1: Examples of binary or bit reversed numbers

reversing the digits and converting back to decimal. A constant 1/2/N is then added
to keep the numbers nonzero.

Pseudo-random numbers are also used, especially in the thermal velocity distri-
butions. A fourth non-random option can be used as well, whereby the particles are
loaded onto a rectangular grid with possible small random adjustments off the grid
in the axial direction.

Out experience has shown that the digit-reversed method generally gives the best
distributions. The advantage of uniform distributions is lost, though, in longer runs,
as the particles mix and the fluctuations rise to a thermal level. See reference [9] for

further information on non-random number generators.

Beam Distributions

There are two different longitudinal distributions available, an infinite beam and a
finite beam. The axial position and velocity are loaded the same way for both, except
that for the finite beam, they are usually transformed to give a rounded end. This
transformation is done by the routine which is described in detail in section 2.1.3.
The transformation makes the falloff in line charge at the ends of the beam parabolic.
The routine produces an array containing the square root of the line charge that is

used to scale the transverse dimensions of the beam. The scaling is done in a way
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that keeps the tune depression the same as in the rest of the beam.
Except for the grid loading (the fourth option described above), the axial positions
steadily increase from the tail of the beam to the head. They are given by

2(1) = Zumin + Zien ;5) (2.29)

where ¢ varies from one to n, and n is the total number of particles. The axial thermal
velocity distribution is Gaussian, except when a finite beam is loaded with a rounded
end. That distribution is described in section 2.1.3. Once the longitudinal positions
are obtained, the envelope for the transverse distributions can be calculated. The
loader can either use the output from the envelope calculation, or can load the beam
into a cylinder. Appendix A details the envelope calculation. When the axial velocity
is loaded, an optional head to tail velocity gradient, or “tilt”, can be added. This is

used to initiate axial compression of the beam.

Semi-Gaussian Distribution

Two transverse distributions have been used, a semi-Gaussian distribution that is
Gaussian in velocity and has a “top hat” distribution in position, and the Kapchinskij-
Vladirmiskij (K-V) distribution [4].

For the semi-Gaussian distribution, the positions and velocities are loaded inde-
pendently of each other. Different random number generators can be used. The po-
sitions are first loaded into a normalized rectangular block. The block is then carved
and scaled to the envelope shape as described below. For the cylindrical beam, all of
the points outside the cylinder are thrown away. Carving the beam to fit the calcu-
lated envelope can be done in one of two ways. The first is the streamline method,
whereby the block is carved into a cylinder and then scaled to fit the envelope. The
other is the stripe method; the block is carved directly to the shape of the envelope.
The streamline method is the preferred method since the axial variation in density
more closely matches that of a real beam and the line charge density is constant.
With the stripe method, the density is uniform and the line charge is not constant,

but depends on the area of the beam in the transverse plane.
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The thermal part of the velocities are Gaussian. The coherent transverse velocities
associated with motion in the alternating-gradient fields, which are scaled to the
envelope and normalized positions, are then added.

Hollow beam distributions can be used. The “top hat” distribution is transformed

it into the distribution

N fO(Tn:M)Qa if r < rmax/2;
) {fo(l_( o )2)/3, if r > rmaxz/2.

rmax

(2.30)

where fy is the normalization constant. The thermal velocity is not affected by the

transformation.

Kapchinskij-Vladirmiskij Distribution

With the K-V distribution, the transverse positions and thermal velocities are loaded
onto a four dimensional ellipsoid, represented by the normalized delta function &(z?+
y?+ 2 +y'* —1). Only three random numbers are generated, the fourth is calculated
using the delta function. The positions and velocities are each loaded into ellipses to
give uniform distributions, the two dimensional projections of the 4-D ellipsoid. The
first random number is used to calculate the radius in the ellipse. The second is the
angle for the position, and the third is the angle for the velocity. The alternating
gradient velocities and positions, which are scaled to the envelope, are then added.
After the beam is loaded, the particle number and weights can be set. The charge
and mass of the real particles represented by the code particles are stored. The
conversion factor between real particles and code particles is also calculated. It is the
ratio of the number of real particles to the number of code particles. The factor has
to be adjusted for the finite beam since the middle of the beam is slightly compressed
from the redistribution during the “cigar” transformation (discussed below). Particles
are moved out of the ends of the beam to give a lower line charge density. The
conversion factor is mostly used in the deposition of the particles to the charge density

grid to give the charge density in MKS units.
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Injection

Injection is handled by routines that are separate from the particle loading routines
just described. The injection implemented is not space-charge-limited. At each time
step, a preset number of particles is injected from the plane of injection. The particles
are distributed evenly over the axial distance travelled in one time step. That distance
includes acceleration by any potential gradients along the beam axis. The particles
are distributed as if they were injected uniformly in time and accelerated along a
uniform electric field given by the ratio of the potential change across the region of
injection to the length of the region.

Currently, the transverse particle distribution is limited to a Semi-Gaussian dis-
tribution, uniform in space over an ellipse, and Gaussian in thermal velocity. The
positions are determined with the digit-reversed non-random number generator.

The handling of particles in memory takes advantage of the dependence of the
memory location on the axial position. Particles are loaded in increasing order in
axial position so that particles with larger axial position are located higher in memory.
Since beams have positive velocity, the particles which will exit the grid first will be
the particles with larger axial position, and therefore higher memory location. The
initially loaded particles are moved to the end of the arrays, leaving the beginning of
the arrays empty. The particles which are then injected are placed in the arrays just
before the already loaded particles, slowly filling up the first part of the arrays. Also,
any lost particles are cleared out of the end of the arrays. When the beginning of
the arrays are filled, the active particles are moved to the end of the arrays and the

process repeats.

2.1.3 Finite or Cigar Shaped Beam

With a finite length beam, the axial positions and velocities can be transformed so
that the beam has tapered ends in which the line charge falls off parabolically. The
square root of the normalized line charge density is also calculated and is used to scale

the transverse positions and velocities. This beam profile resembles a cigar, hence
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the name.

The transformation starts with normalized positions and velocities with uniform
distributions. They are scaled to have the tapered distribution. The tapered, or
“Neuffer”, distribution used is derived in reference [10]. A parabolic falloff in line
charge is desired so the axial electric field, which is approximately proportional to %7
is linear. The ends of the beam can then be axially confined with externally applied
linear fields.

In a long beam, the line charge is parabolic in the ends and constant in the center.

When the length of the whole beam is 1, and the length of each end is z., the line
charge is given by

A (1l — (282;22)2), for 0 < z < z;

e

Az) =< A, for z. < z2<1— 2z (2.31)
Ao(1—EE=ly - for 1 — 2 <2 < L

The transformation to a cigar shaped beam is accomplished by integrating the line
charge density of the cigar distribution and comparing that to the integration of the

line charge density of a uniform distribution.

In the range 0 < z < z., first set A, to > so that the integral of A from 0 to z, is

2ze

1. Then define the uniform line charge,

(2.32)

3
227

\ 0, for0<z<z/3;
v for z./3 < z < z..

so it too has a integral over 0 < z < z. equal to 1. Then integrate each and set them

equal to each other.

/Z py . / Aodz (2.33)
0 Ze

3

Here, z, is a location in the uniform distribution and z is the location to which it is

transformed. Expanding this out and rearranging gives a cubic equation in z.

3
=) g4 +3

3
z? Ze Ze

Z— Z Zy — Ze

=0 (2.34)
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The roots were found in a standard reference, and are all real. Only one falls within

the desired range.

2
o b [T )]
g = —cosa +v/3sina
z= (1+ )z

The transformation is done similarly in the other end of the beam, in the range

(2.35)

1 — 2. < z < 1. The uniform line charge is defined as

21’ for 1l —z. < z<1—2/3;
= (2.36)
0, for 1 —z./3 <z< 1

Equating the integrals as above,

/ Mz = [ adz, (2.37)
1—z¢ ZTE
gives a cubic equation in z;
—(1- e 3 —(1- e u I - e
(= (32)) P Gl Pl ) N (2.38)
2z Ze Ze

The root that falls within the desired range is

Zu—(1—2ze 2 Zu—(1—2z¢
a= et [\fi - (3 gaste)
B = —cosa + V3sina
z= fPz.+1-— 2z

(2.39)

The axial velocity is transformed with the same method above except that the
distribution function is used in place of the line charge. The distribution function

that was derived in Neuffer’s paper is

flz,2") = Ok (22 = (2 — 2)?) — ()2 (2.40)

Here, 2’ is ratio of v, and vpeam and C and k' are constants. The extrema of 2’ are

given by Neuffer as

ax = i = VK2 = (2 — 2.)?) (2.41)
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Figure 2.2 shows the distribution function versus z’ for several values of z. The
transformation for the end of the beam where 0 < z < z. is done as follows. Setting

the extrema of z’ equal to £1 at z = z. gives k' = 1/z2. Rewrite f as

f(z,2") = Cy\J1 — B2 — (2')2 (2.42)

with 8 = (z — z.)/z.. Integrating f over z’ from z/ . to z’ gives

z C /— 1 ' e 5
(2.43)
Now, define f, to be parabolic in z, and uniform in 2/, over the range 0 < z, < 1 and
—% <zl < % such that the integral of f, over all of z/ is equal to the integral of f
over all of 2.

fu= Cg(l - 3% (2.44)

Integrating this over z/, from —1 to z/, gives

[r=cTa-mE+ D) (2.45)

N =

Now set equations 2.43 and 2.45 equal to each other and rearrange.

L= 82— () + (1 = B*)sin™' (+//VI = B?)
m(l—p3%)

This equation is transcendental and has no analytic solution and so was solved iter-

— 2 =0 (2.46)

atively by the Newton-Raphson method. The equation iterated is

7 _ 2 o —1 ! /1 2
i) JFTm
where 6 = (/1 — 32 — (2’)%. An initial guess is made based on z!.

2 = gz;\/l — 3 (2.48)

The iteration is done four times, giving acceptable convergence. The transformation

in the end of the beam where 1 — z. < z < 1 is the same except the definition of 3
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Cigar velocity distribution
1.0 -

@ Il
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Figure 2.2: Cigar velocity distribution function at several values of z. Velocity is
normalized so the extrema are £1 and f is normalized to have a maximum of 1.
z = .5 is in the center of the beam and the other two are nearing the end of the beam,
which is at z = 1.

changes. f = (z — 1 + z.)/z.. Also, in the center of the beam, the transformation is
the same, but g = 0.

The particle loader uses the square root of the normalized line charge to scale the
transverse positions and velocities. The scaling is done in a way that keeps the tune
depression in the ends of the beam the same as in the bulk (the ratio of the beam
current and the transverse emittance, I/¢, and [/¢,, remains constant). The scaling
is done in this way so that the envelope need only be calculated once. The beam
envelope is obtained by scaling the calculated envelope by the square root of the line

charge. This also keeps the space charge density, p, constant since
__AME) o AE)
P= Area(z)  a(z)b(z)T

(2.49)

where Area(z) is the transverse area of the envelope and a and b are the envelopes
of the scaled beam in the x and y directions respectively. The transverse emittance
varies in the same way as the line charge. The transverse velocity depends on both

the scaled envelope and transverse emittance.
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A finite length beam must be axially confined in some manner to prevent axial
expansion from space charge and thermal forces. In a real ion induction accelerator,
this is done by applying time-dependent axial fields periodically to the head and tail
of the beam. They typically accompany the accelerating fields and are called “ears”.
In WARP, this is generally modelled by applying the axial field continually in the
beam frame. Two methods for calculating the applied field have been implemented.
In both cases, the applied fields are functions of only z. In the first, the applied field
is calculated directly from the beam space charge and emittance. The applied field is

given by

Ei(z — Zbeam + 25);,  for z < Zheam — 2s;
Eeas(2) =% 0 for Zheam — zs < 2 < Zheam + Zs; (2.50)

Ei(z — zZbeam — #s), for z > Zpeam + 2s;

where Zpeam 18 the lab frame location of the beam center, z; is half the length of the

center section of the beam, and

=

21 MVZ2e
. g . z elong‘ (231)
2V, 2%7e, Qz2

€

E =

Here, [ is the current in the center of the beam, ¢ is a geometric factor of order
unity that depends on the size of the beam and beam pipe, V, is the beam velocity,
M is the mass of the simulation particles, €iong is the longitudinal emittance, €jong =
22.V¢ny /b, and @ is the charge carried by each of the simulation macro-particles. The
longitudinal emittance is of the ends of the beam, €jong = 22.0¢h,/vs Where vy, is the
axial thermal velocity, and v, is the beam velocity.

The “one-dimensional” assumption that the axial electric field is proportional to
% is used to obtain this expression. This does not work well in three dimensions. The
axial fields are not linear and the particles off axis are pushed too hard and bunch up
where the taper meets the center portion of the beam.

The second method is to use the negative of the axial electric self-field on axis as

the confining field. The field in the tapered ends of the beam is used as well as the

field several grid points into the center portion for continuity. This method works
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very well. Several runs have been done where the beam travels about one hundred
times its length with very little distortion in the ends and no noticeable bunching.
See chapter 3.

An example of a cigar shaped beam is shown is figure 2.3. The line charge density
and various profiles are shown. Figure 2.4 shows a comparison of the electric field
on axis to the confining field as calculated by both methods. The confining field
calculated by the first method is linear and does not fit well. The slight difference in
the axial electric field and the confining field calculated by the second method is due

to the need to account for the thermal forces.

2.1.4 Calculation of Particle Moments

There are two different systems for calculating particle moments. One calculates
moments versus z in the beam frame, the other calculates moments versus time in
the lab frame. The beam frame moments are calculated directly from the particles on
a one dimensional mesh. The lab frame moments are then calculated from the beam
frame moments by interpolation.

For the beam frame moments, the particle data is loaded onto the moments mesh
either by nearest grid point or by linear interpolation to the two nearest grid points.
For linear weighting, errors caused by variations of particle axial positions within
the finite-length grid cell are removed by “extrapolating” the particle quantities in
time to the two grid points. Combining linear interpolation and this extrapolation
decreases noise in the moments, since particles which are farther from the grid point
and therefore have a worse extrapolation contribute less.

The extrapolation is done using the current and previous velocities of the particle.
The change in time, At, from the current time and the time the particle was at the

previous grid cell is calculated using the current axial velocity.

Z; — %

At =

(2.52)

Uz

where z; is the location of the previous grid point, z is the current location of the

particle, and v, is the current axial velocity. This time is used along with the current
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Figure 2.3: Cigar beam profiles and line
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Axial Electric Field and Ear Field

Ear Field =

Axial E Field

— Linear Ea‘r Field

Il S o

Z (m)

Figure 2.4: Comparison of axial electric and the negative of the ear fields on axis.
The gap between the axial field and the ear field results from the addition of the field
to counteract the thermal pressure.

transverse velocity, v, (or v,), and position, = (or y), to find the transverse position
at the grid point, z; (or y;).
;= + v, Al (2.53)

The velocity is then linearly extrapolated using the previous and current velocity.

At At

v =v(l+ E) ~ Uprev

(2.54)

where v; is the velocity at the grid point, v is the current velocity, vpey is the previous
velocity and dt is the time step between the current and previous velocity. The same
equation is used for each of the velocities v,, v,, and v,. A similar extrapolation is
done for the other grid cell adjacent to the particle.

The main effect of the interpolation is to smooth the emittance calculation. In a
quadrupole focusing element, the transverse velocities of the particles change rapidly.
Particles with differing axial position but near a grid point inside of a quadrupole
focusing element will have a wide variation in transverse velocity; this would cause a
large increase in the calculated RMS emittance. Interpolation alleviates that increase
by taking the contribution from the particles at the same values of z, when they have

similar velocities. The interpolation assumes that any forces are constant throughout
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the time step and so breaks down across the entrances and exits of quadrupole focusing
elements. At an entrance or exit, residence corrections are used, so the focusing force
is applied on only part of the time step. The extrapolation, assuming that the force
was evenly applied throughout the time step, will then be incorrect. These errors are
usually small, and can sometimes be seen in time-histories of the emittance as thin

spikes.

2.2 Fields

The following sections describe the handling of the fields.

2.2.1 Beam Self-Fields

The fields from the beam space charge are calculated on a cubic three dimensional
mesh. The fields are calculated either by fast Fourier transforms (FFT) or by suc-
cessive over relaxation (SOR). The FFT’s are sine-sine-periodic transforms. Using
sine-sine transforms in the plane perpendicular to the direction of beam propagation
forces the potential to vanish on the conducting walls. The axial transformation is

periodic. The SOR field solver is described in detail in a later section.

2.2.2 External Fields

The focusing fields can be either alternating gradient (AG) quadrupole fields, or (as an
idealization) continuous radial electric fields. The AG fields can be either magnetic or
electric. The quadrupole fields in the simplest model are sharp edged with no fringing
fields. Their profile is also flat; the fields have no axial dependence inside the element
and are zero outside. The idealized continuous fields are constant along the axis.
The bending fields are from either magnetic or electric dipole elements. These are
also sharp edged and have a flat axial profile with no fringing fields. (The lowest-
order effects of slanted entry and exit faces are included for magnetic dipoles.) In a

bend, each particle is tracked in its own coordinate system that rotates around the
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bend.[22][19] The fields are also modified in a bend. Both the bends and dipoles can
only affect the beam in the horizontal, or z, direction. There are magnetic dipoles
B,, with y being the vertical direction, and electric dipoles £,. More detail on this
can be found in section 2.2.3.

The accelerating fields as implemented have a flat profile within the gap and no
fringing fields. They have no axial or transverse dependence. They are also constant
in time (this restriction can be relieved by appropriate use of the code’s interactive
interface).

The focusing, bending, and accelerating fields are all set by the user with the

lattice description formulism. This formulism is described in the next section.

2.2.3 Lattice Description

The lattice description consists of a set arrays for each element type that contain the
starting and end points as well as other properties, such as field strength. The set
of arrays gives all of the information needed about each element. Four element types
are implemented: quadrupole focusing, dipole, bending (coordinate transformation),
and accelerating gaps. The lattice can be periodic, either in the sense of repetitive
elements along a linac, or in the sense of a circular machine.

The set of arrays for the quadrupoles hold the field strengths for either magnetic
or electrostatic focusing and also the dimensions of electrostatic quadrupoles. These
dimensions are used by the more elaborate capacity matrix and SOR field solvers to
model the electrostatic quadrupoles from first principles.

The quadrupole elements can be made more realistic be adding offsets representing
misalignments or by adding non-linear, higher order fields. The offsets can be random,
with a Gaussian distribution, or can be set by the user. The periodicity can be the
same as that of the general lattice, or can be different. The offset would have the
same periodicity in a recirculating accelerator, when the beam would repeatedly pass
through the same elements. For a straight linac, they could be different; the lattice
would be periodic, but the beam would be passing through elements with different
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errors. Some higher order moments are included along with focusing fields. They
are the dodecapole component (the Vg term in equation 1.4) for the sharp-edged
electrostatic focusing model and the octopole and octopole-like fields (the term Vg,
Viz and V4 in equation 1.4).

The bend lattice is usually tied to the dipole lattice. If the user only sets the
bend lattice, a magnetic dipole lattice will be set automatically to give the appropri-
ate bends. The bending elements are then assumed to be dipole magnets with the

strength determined by the bend radius and beam parameters:

o Mion ‘Abeamm;y

By (2.55)

Zionrb

where M., is the mass of the beam ions, Vjean 1s the beam velocity, 4 is the average
relativistic factor of the beam, Z;,, is the charge of the ions, and ry is the bend radius.
The starts and ends of the dipole elements are the same as the bend elements. Of

course, the user can manually over-ride this automatic association.

2.2.4 Internal Lattice Description

Inside the code, the lattice described by the user is transformed into an internal
representation that is more efficient. For each of the lattice arrays, there is an internal
array that holds the same data, but in a different format. The internal arrays are
one-dimensional grid arrays along the axis where each grid cell contains information
about the nearest element. The starts and ends of the elements are converted to the
lab frame. These arrays move with the beam and are set before every time step.
Obtaining the nearest element to each particle is thus efficient. Its axial position
determines the grid cell where the particle lies. The nearest element is then imme-
diately known from the internal lattice arrays. This means that scans through the
input lattice description are done for each axial grid cell location, of which there are

few, instead of for each particle, of which there are many.
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2.2.5 Field Solutions with Internal Conductors

Two different types of internal conductors can be handled in the electrostatic field
solution. A structure that is infinite in extent along the z axis and has no z depen-
dence, such as a round pipe, can be modeled, as can periodic electrostatic focusing
elements. The first is dealt with via the capacity matrix method [5] which is built
on top of the 3-D Fast Fourier Transform field solver. The second can be dealt with
either via the capacity matrix method, or, for more complex focusing structures, the

point successive overrelaxation (SOR) method [11].

Capacity Matrix Field Solver

For the pipe-like structures, the capacity matrices are applied in k, space, with each
wave number treated independently. This can be done with the assumption that there
is no variation in z of the conductor cross section. Each wave number then has its own
matrix. The inverse matrices are found first by using C~'pi, = ¢, where py_ is the
charge density at the points on the conductor in k, space, and ¢, is the potential at
the points on the conductor in k, space. Both pi, and ¢ are one dimensional arrays
with an element for each point on the conductor in the transverse plane. For each
such point, the charge density for all &, is set to unity and the electrostatic potential
is found with the 3d FFT without the forward and backward z transforms. The array
d, fills the appropriate column (or row, as it is symmetric) of the inverse capacity
matrix. Once the inverse matrix has been completely found, it is inverted to find
the capacity matrix. The inversion is done by first reducing the matrix by Gaussian
elimination and then calculating the inverse column-by-column via backsubstitution.
The matrix is then used in &, space by solving the equation pikiduced = C¢yp,. The
pipdueed the induced charge on the conductor, is loaded onto the grid, along with the
z transformed beam space charge. The potential is then solved for again via the three
dimensional FFT, including both the beam space charge and the induced charge.
All of this is done assuming an eightfold symmetry of the conductor shape within

the square walls of the FFT. This reduces the amount of work to calculate the capacity
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matrix and the amount of storage for the matrix by a factor of nearly eight, though
it makes the coding quite complicated.

The periodic electrostatic focusing elements are handled completely in 3d real
space. For quadrupole rods which are far apart in z, the capacity matrix method is
used. Since the elements are far from each other, they can have independent matrices.
There is otherwise no difference from the standard capacity matrix method. Each
matrix represents the four symmetric conductors that make up the quadrupole. This
allows use of fourfold symmetry to save space and computation time.

Quadrupoles are considered far apart when their separation is greater than the
aperture. Field solutions were found with various configurations to examine the
interaction between neighboring quadrupoles. The gauge of the error is the ratio of
the calculated potential on the conductor and the desired potential. With increasing
interaction between quadrupoles, the potential calculated will deviate further from
the desired potential. The length of the separation was varied from .01 to .1 meters.
The quadrupole aperture was varied from .002 to .2 meters. The transverse extent of
the field mesh was varied transversely to cover just under half of the quadrupoles to
containing the entire quadrupole. Finally, the length of the quadrupole was varied.
Table 2.2.5 shows some of the data taken. The dominant effect is the ratio of the

separation to the aperture. The numbers were used to derive the following relation.
r=1-10""s (2.56)

Here, r is the ratio of potentials, s is the separation, and a is the aperture. The
parameter v is of order unity. For the typical cases, it varies between .8 and 1.2. For
the more extreme cases, v varied from .25 to 2.

Care is needed in choosing the location of the conductors with respect to the grid.
To avoid jagged fields near the conductor surface, the points used in the matrix are
independent of the grid and conform to the surface of the conductor. The tri-linear
interpolation is used to lay down the induced charge of each point onto and to obtain
the potential at each point from the surrounding points.

The relation between transverse surfaces and the grid is subtle since the surfaces
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a=.02 wall=.05 | a=.02 wall=.04 | a=.2 wall=4 | a=.002 wall=.004
s |r vt ylr ylr ~y
.10 | 199992 819 1.999991 1.009 | .6917 1.022 |1.—3 x107** .25
.08 | .99946 816 | .999904 1.004 | .6152 1.037

.06 | .9964 814 1.999006 1.001

.04 | .976 .809 | .9897 994 | 4057  1.130

.02 | .843 .804 | .8964 985

.01 | .607 811 | .6771 982 | .1671  1.588 | .9928 43

Table 2.2: Check of interaction of quadrupoles with capacity matrix field solver. r is
the ratio of the potential on the conductor obtained in the field solve and the desired
potential. The data was fit to 1 —1077a. a is the quadrupole aperture (the rod radius
is 8/7a). The wall is the extent of the field mesh.

are curved and since accurate focusing fields are needed. The points do not lie on the
grid so if there are fewer points than grid points, there will be holes through which the
field can leak. The focusing fields are slightly higher than what would be expected.
With fewer points on the conductor surface, more charge is needed at each point to
give the desired voltage. This increased charge is deposited on grid cells surrounding
the conductor point, putting some of it closer to the axis, decreasing the effective
aperture. The focusing field is thus increased. The difference is typically on the order
of a few percent or less. Figure 2.5 shows values of the ratio of the peak focusing
field to the expected focusing field and the integrated focusing field versus number of
points per axial plane in the conductor. These numbers will vary depending on the
grid cell size in relation to the conductor size. Note that after a certain number of
points, the accuracy does not improve any further.

Along the axis, the points are separated by the grid cell size. The precision of
the field solution is very insensitive to the location of the point with respect to the
grid. Field solutions with the points in different places with respect to the grid were
compared. The integral of the resulting quadrupole focusing field over one quadrupole

was the same out to ten places for all of the cases!
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Figure 2.5: Focusing fields versus number of conductor points. a) is the ratio of the
peak quadrupole fields and the expected quadrupole field. b) is the integral of the
quadrupole field over one quad in arbitrary units. In both cases there is a wide spread
of values for small numbers of points. When the number of points is odd, there is a
point at the tip of the rod. When the number is even, there is no point at the tip
and the rod is effectively farther from the axis.

Successive Overrelaxation Field Solver

For more complex structures that are close and possibly touching, like long quadrupoles
with end plates, the capacity matrix may become too big for solution in a reasonable
amount of time. The matrix becomes bigger when the structures take up more space
inside the field grid and require more points to be described. Also, the elements
cannot be treated individually so all must be included in one very large matrix. For
cases like these, the point SOR method was competitive and therefore implemented.
Currently, the code is set up to specifically handle quadrupole focusing structures
with end plates. See figure 6.1 for a diagram showing the geometry.

In three dimensions, the finite difference form of Poisson’s equation used is the
seven point difference scheme. After rearrangement and inclusion of the relaxation

parameter, the equation that is iterated for each grid point is:

¢ijk _ WAQ(Pijk/GO + ¢5¢+1j2—;f;5i—1jk + ¢ij+1kA‘|;215z‘j—1k + ¢ijk+1A‘|;;5ijk—1) ]
( v (2.57)
+(1 —w)diji.
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where the subscripts are grid cell indices, w is the relaxation parameter,

L1, (2.58)
A2 T A2 T A T A "

and Az, Ay, and Az are the grid cell sizes in the various directions. The ordering
that is used is the three dimensional extension of even-odd. The potential on the
internal conductors is enforced by setting it to the desired value before each iteration.
The boundary conditions at the edge of the grid can be either Neumann, Dirichlet,
or periodic.

For simple SOR, all of the conductor points are on the grid. This gives jagged
fields near the conductors and also gives incorrect focusing fields. When only points
within the conductor are considered to be at the fixed potential of the conductor,
the focusing field on axis will be reduced by as much as five to ten percent. The
effective aperture is approximately given by the distance from the centerline to the
grid points inside the conductor which are nearest the surface. These points will
always be farther away from the centerline than the actual conductor surface and so
the fields on axis will be weaker.

There are two solutions to that problem. The first is to change the points which
make up the conductor by including points just outside the surface. The optimum
distance outside the surface over which to include points was empirically determined
with several different grid cell sizes and several conductor shapes to be one quarter
of the grid cell size. The better way is to explicitly include sub-gridscale boundary
placement into Poisson’s equation. This was done and is described in section 2.2.5.

The point SOR proved slow for simple internal structures. The main problem
with the iterative method is that all of the work must be redone at at each time step.
The capacity matrix is superior for simple internal structures since it does most of
its work at the start of the run when it calculates the matrix. This leaves only a
small amount of work at each time step, the matrix multiply and extra 3D FFT. The
iterative solution can be sped up by using the solution from the previous time step,
but the fields change enough between time steps so that this does not help enough

to render SOR faster than the capacity matrix method when the quadrupoles can be
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treated independently.

Another iterative method that would include internal conductors was also exam-
ined. It is an iterative method based on the algorithm developed in reference [12].
This method was found to be far too slow for our purposes. Each iteration required
a full 3d FFT field solution. The method would be appropriate were resistive blocks

desired.

Sub-gridscale Boundary Conditions

Sub-gridscale placement of boundaries is handled by explicitly including the location
of the boundary in relation to the grid in the finite difference form of Poisson’s equa-

tion. This is easily explained in 1-D. The finite difference form of Poisson’s equation,

v2¢ = _p/607 is

Pit1 — 20 + dia _ P
AQ (&) ’
where the subscript refers to the grid cell index and A is the grid cell size. If the edge

(2.59)

of the conductor surface is between the grid points ¢ and ¢ + 1, and 2 + 1 is inside, the

potential at the edge would be interpolated as

Dedge = (1 —6)¢:i + 6¢it1. (2.60)

Here, ¢ is the distance between the grid point ¢ and the surface divided by the grid
cell size. The value of ¢eqge is the known voltage on the conductor, and the value
®iy1 1s a free parameter since it is inside the conductor. The previous equation can

be rearranged to give a value to ¢;41.

iy = Dot~ 551 —9)é (2.61)

This is then put back into Poisson’s equation to give

(Pedge — (1 — 5)222/5 —26i + bia _ —f_ (2.62)

which is then rearranged to bring all of the terms of ¢; to the left hand side to make

it fully explicit.
¢i—1 + ¢edge/5 + Azpi/ﬁo

(2.63)
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Note that in the limit 6 — 0, ¢; approaches ¢eqq. The expression is never used
though in the code when ¢ is zero.
The SOR relaxation parameter, w, is added in afterward to give the final equation

to be iterated:

¢' — (¢i—1 + ¢edge/5 + AQPZ'/GO

2_|_% )w‘|’¢i(1_w)' (2.64)

The parameter w has the same meaning as in the previous section.

The idea extends easily to two and three dimensions. The linear interpolation is
done independently in each direction for which there is a conductor. From each of
the interpolation equations, the potential at the point inside the conductor is put in
terms of the point on the surface and the point outside. The expressions are then
each put into the seven point finite-difference form of Poisson’s equation which is
then rearranged to make it fully explicit. If the one point ¢4 is in the conductor,
equation 2.61 (adding the indices j and k to ¢) is used to replace ¢;41x in the finite-

difference equation about the point ¢, ;.

(d’edge_(1_ﬁ)éi]k)/é_Qqsi]k‘l'd)i—l]k _I_ d)i]+1k_2¢i]k+¢’i]—1k _I_
Aa? Ay? (2.65)

Bijk+1—20ijktPijr—1 __
= Ag T = —pijr/co

The resulting equation is rearranged to make it explicit and the relaxation parameter,

w, is added in.

WA2(ﬁi]k/50+ +¢i]+1k+¢i]—1k bijk+1 +¢'i]k—1)

¢. . — Az Ay2 + Az2
gk — (1—56)A2

I+ (2.66)
—|—(1 — w)qbijk.

¢edge/‘5+¢'i—1]k
2

Now, during the iterations, this equation is used at the point 25k instead of the
equation 2.57.

When there are two points inside the conductor in different directions from point
2,7, k, they can be treated independently. The interpolations are done for each of the

two points and then put back into the finite difference equation. If the points ¢;11;x
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and ¢;; 415 are inside the conductor, the final equation would be

¢edge/6$+¢i—1]k

WA2(pi]k/50+ +¢edge/ x+2¢z]—1k +¢z]k+1+§z]k—1)

¢"k _ Az? A Az
- — 2
v 1+(1—61)A2+(1 5y)A

YN Sy Ay? (267)

+(1 = w)ijn-

Here, 6, and 6, are the respective unitless distances in the  and y directions between
the grid point 27k and the surface. The extension to three dimensions is done similarly.

Note that currently, the points must be offset from :5k along differing axes. The
case when two opposite points, say ¢;_y;z and ¢;41x, are inside the conductor, while
®ijk 1s outside, has not been implemented. This limits the use of the sub-gridscale
coding to convex or planar surfaces. For example, with a plate in which there is a
hole, the sub-gridscale coding can not be used. Only the potential on grid points
within the plate can be set, leaving the inside of the hole jagged. Having an end plate
with a jagged edge has little effect on the simulation. The plates are narrow (in z) so
the jagged edge is over only a small extent.

Two simulations were done to compare the results with the sub-gridscale boundary
conditions and without. The ESQ injector experiment which is discussed in Section
6.5 was simulated. The results are shown in figure 2.6. The envelope without the
sub-gridscale boundary conditions was larger since the quads are effectively farther
away from the axis. The emittance is also subsequently larger since the larger en-
velope experiences larger non-linear fields. Another simulation was done in which
the aperture of the plates holes was varied. There was no noticeable change in the
results, showing that the results are insensitive to the size of the plate aperture and
so it is not necessary to resolve the plate aperture with the sub-gridscale boundary

conditions.
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Figure 2.6: Comparison of the envelope and emittance of an ESQ injector with and
without sub-gridscale boundary conditions. The solid line is with and the dashed
line is without. Note that the dashed envelope is larger since without sub-gridscale
boundary conditions the quadrupoles are effectively farther away from the centerline
and so the focusing force is less. The dashed emittance is also larger since the larger
envelope experiences larger non-linear fields.

2.3 Optimizations, Plot Handling, and the Basis
System

2.3.1 Techniques Used for Optimization

Various techniques have been used to decrease both computational time and the
amount of memory used. Some have been explained earlier, in the appropriate sec-
tions, others are listed here.

In order to reduce the number of large three dimensional grid arrays, we do not
store the electric fields on the grid. Instead, the potential in the neighborhood of
each particle is gathered on a particle-by-particle basis. This ends up saving us both
memory and time. Storing the fields on a grid would require an additional three grid
arrays, one for each coordinate direction. Since the beam usually occupies the center
region of the mesh, all of the outer areas would be wasted space. Also, the finite

differencing of the potential to get the field in the outer areas would be wasted time.
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Usually it is the case that there are more grid points than there are particles, so fewer
total calculations are done on a particle by particle basis.

The electric fields are calculated as a two point finite difference, E; = %7
where E and ¢ are the electric field and the electrostatic potential and z is the grid
index in the appropriate direction. Each of the three fields, F,, F,, and E,, are
calculated on the eight vertices of the grid cell that the particle occupies and these
are interpolated linearly to the particle. All field components are calculated and
interpolated at the same time for each particle. This requires gathering the potential
from thirty-two cells in the neighborhood of each particle.

A significant speedup can be gained by using a special feature of some computers
that is known as “vectorization”. This allows simple loops to be processed at a much
faster rate by overlapping the calculations. Loops that do any accumulation, though,
cannot be vectorized. If accumulations are overlapped, some of the passes through
the loop will not be added in, leading to errors. There are two major pieces of the
code that do accumulation, the gather of the charge density from the particles, and
the calculation of the moments from the particles which was described earlier. In
a loop over the particles, more than one particle will be contributing to the same
field or moment array element, leading to possible collisions when vectorization is
employed. This is circumvented by vectorizing with respect to other quantities. For
the charge density scatter summation, each particle will contribute to the eight grid
points on the corners of the grid cell it occupies. These corners can be vectorized
over. The moments calculations are accumulations of the positions and velocities of

the particles. The list of moments that are calculated is the quantity that is vectorized

over.

2.3.2 Plot Handling in WARP

The main form of output in WARP are plots created during a run and plots made at
the end of a run. There are several different type of plots that can be made automat-

ically during a run: particle plots, contour plots, and line plots. The particle plots
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are plots of the simulation particles in various views. The particles that are included
in the plot are determined either by subsets or by windows. A subset consists of a
smaller number of particles than the total number, chosen randomly. The windows
are ranges in space; all particles within a window are plotted. The contour plots are
of the quantities on the grid, the charge density and the electrostatic potential. These
are also done by windows (the plane at mid-window is plotted). The line plots are
plots of various quantities versus z. The plots made at the end are the history plots.
Plots of any type and of any quantity can be made through the Basis interpreter,

which is described briefly in the next section.

2.3.3 Basis

Basis[13] is a code development and run-time system that, through an interactive
interpreter, gives the user access to variables and subroutines in the compiled code.
The interpreter also has Fortran-like constructs (including loops and conditional state-
ments) to manipulate variables. These, combined with the access to code variables,
allows the user to dynamically control the progress of a run, modify internal variables,
and produce diagnostic plots and output in an interactive manner. A file contain-
ing assignments to variables and calls to initialization routines can be read in to set
up and start a run; this is a more sophisticated version of the Fortran “namelist”
capability, but allows the user to “reprogram” the code’s behavior by including the
necessary coding in the input deck. Basis also takes care of memory management
and allows dynamic allocation of arrays, alleviating the need to recompile in order to

change array sizes.
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Chapter 3

Long Time Behavior of Finite

Length Beams

The study of long time beam behavior requires the capability of loading a finite
length beam and confining it axially. Unconfined finite beams exhibit free expansion
longitudinally due to both thermal forces and space charge forces. Beams run with an
axial (z) velocity “tilt” (head to tail gradient) are initially compressed, but expansion
soon takes over again, blowing the tips off the beam. The capability of loading and
confining cigar-shaped, finite length beams has been implemented in WARP and is
described in section 2.1.3.

Many runs have been carried out using the axial confinement model; we summarize
some of them here. See table 3 for the parameters of the runs described. Run number
one, initialized with the parabolic ends each one quarter the total length of the beam,
uniform focusing, and cold in z, was run for 120 m. Another, run number two, was
started off with the thermal v, the same as the thermal v , the other parameters being
the same, and was run for 60 m. Run number three was taken the farthest, to 210 m.
It used magnetic quadrupole focusing with a tune depression of o4 = 60° to o = 20°
(phase advance per lattice period)[14], and the thermal v, almost a factor of 10 less
than the thermal v,. All of these runs were well-behaved. The axial spreading was

much less than 1% of the beam length, and less than 10 out of about 50000 particles
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run number 1 2 3 4
focusing® uniform uniform | quadrupole | quadrupole
tune® 60° to 20° | 60° to 20° | 60° to 20° | 60° to 55°
a0° (cm) 2.34 2.34 3.05 1.87
b0? (cm) 2.34 2.34 1.88 1.12
current (Amps) 5.22 5.22 5.22 0.343
wall location (cm) +5 +5 +9 +9
beam length (m) 1.2 1.2 1.2 1.2
taper len over total len 1/2 1/2 1/2 1/5
initial RMS vz (m/s) 50. 2x10* 4x10° 1x10°
run length (m) 120 60 210 144

¢Uniform focusing means a radial electric field continuously applied to a cylindrical beam.
Quadrupole focusing means strong focusing with magnetic quadrupoles. The quadrupole focus-
ing lattice is periodic with periodicity of 1.2m. It is a FODO arrangement with magnets .2m long
and a .4m drift space.

bphase advance per lattice period, (undepressed) to (depressed); for uniform focused runs, the
phase advance is measured as if there were a 1.2m period.

“The maximum initial semi-axis of the beam

4The minimum initial semi-axis of the beam

Table 3.1: Parameter list of runs used to study long time behavior of beams. All
of the runs had the following parameters: ¢, =16mm-mrad, Vieam =1.27x107m/s,
~50000 simulation particles and a computational mesh with dimensions 64 x64x128.

were lost out the ends (because the confining fields do not extend beyond the initial
tips of the beam). Also, the transverse emittance remained roughly constant in time
over much of the beam, with no greater than 10% fluctuations; there was no net
transverse heating in the center section, and only heating by a factor of 1.5 to 2
in the ends, signifying that the tapered ends were not initially in equilibrium. The
transverse profile as well as an overlay plot of A versus z at various times are shown
for run number two in figure 3.1

Run number three is shown in more detail in figures 3.2 and 3.3. Plots of the «
and y profile at the start and at the end of the run are shown in figure 3.2. The only
differences are the edge of the beam which is somewhat ragged after the run, and
the few particles that have escaped the head and tail of the beam. In figure 3.3, the

transverse emittance, ¢,,/, versus time at four places in the beam is shown. The only
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Transverse Profile Overlays of A

.25

Figure 3.1: Uniformly focused cigar beam after 120 m. a) Transverse profile b) overlay
of A at various times.

one that shows growth is the one near the tip of the taper. The distribution used
to initially load the ends of the beam is not an equilibrium distribution so the ends
redistribute themselves as they approach an equilibrium with the result of emittance
growth. Figure 3.3 also shows the z thermal energy. The initial rapid rise is an
equilibration effect common to runs initialized colder in z than in z and y, which
we believe to be physical[15]. The subsequent slower rise is the result of numerical
heating common to particle codes; it is reduced by increasing the number of particles
as shown on figure 3.3d. The z thermal energy and the transverse emittance in the
tapers are the only parameters that show significant change.

A run that was emittance-dominated in both the transverse and longitudinal di-
rection was also made (number four in table 3). The tune depression was 60° to 55°,
and the thermal v, was 50% larger than the thermal v;. The model for the confining
field was still accurate enough for this case; no waves were launched into the center
of the beam. The beam was well confined. See figures 3.4 and 3.5.

The confining field is intended to model the confining fields used in a real ac-

celerator. In the latter, the confining field is applied only at the acceleration gaps,
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Figure 3.2: Initial and final (after 210 m) transverse profiles of an axially confined
beam. The major visible differences are a more ragged beam edge and the few particles
that have escaped the confining fields.

along with the accelerating fields; this is done by applying “ears” to the accelerating
pulses. The true intermittently applied field is more difficult to derive since it must
also compress the beam slightly to account for the free expansion between acceler-
ating gaps. This more complicated field will have space and time dependence. Our
initial efforts at modelling intermittent application of the confining force did not use
a carefully tuned field, and led to large fluctuations. One note is that after several
applications of the confining field, the beam did settle down into a new distribution,

with moderate emittance growth. The work is being pursued by others[15]
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Figure 3.3: Emittance time histories of an axially confined beam. a) shows the emit-
tance histories at various places along the beam. Most are fairly steady, except the
emittance near the end of the beam, z=.59 m, which shows steady growth. The dis-
tribution used to initially load the ends of the beam is not an equilibrium distribution
so the ends redistribute themselves as they approach an equilibrium with the result
of emittance growth. b) shows the axial thermal energy history. The initial rapid rise
is the result of a collective effect causing the equilibration of the transverse and axial
temperatures. The latter slower rise is from numerical heating and can be avoided
by increasing the particle number. ¢) and d) show the same quantities but with the
number of particles increased by four. Note that the rise in the axial thermal energy
in the second half of the run has become much more shallow.
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Figure 3.4: Initial and final (after 60 m) transverse profiles of an emittance dominated,
axially confined beam. The major visible differences are a more ragged beam edge
and the shape of the ends. The ends evolved into a blunt shape.
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Figure 3.5: Emittance histories for an emittance dominated beam. The only signifi-
cant change is near the ends of the beam, the plot in the lower right.
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Chapter 4

Effects of Round and Square Pipes

The shape of the pipe surrounding the beam will affect the behavior of the beam.
The image charges in different shape pipes will not be the same since the parts of
the pipe that are closest to the beam and therefore have the largest image charge
will not be the same. The shape of the surrounding pipe will have least effect on a
beam which is centered on axis. The walls are relatively far away from the beam so
the image charges on the walls will have the least effect. Off-axis beams will feel the
effects of the pipe shape more strongly.

This section compares the behavior of beams in round and square pipes. This
comparison is of interest in applications of this code since it works in Cartesian
coordinates. The simplest boundaries are then the sides of a rectangular metal box.
With the transverse dimensions the same, this gives a square beam pipe. In general,
though, the true beam pipe shape would be cylindrical. The fields in the square pipe
are calculated using fast Fourier transforms in Cartesian coordinates with transverse
conducting boundaries. The fields in a round pipe are calculated using the capacity
matrix method on top of the FFT in Cartesian coordinates as described in section
2.2.5.

Several axially confined beams were run through randomly offset quadrupole mag-
nets. The offsets represent alignment errors. The offsets were all in the transverse

plane, with  and y RMS values of 1 mm. The offsets move the beam off center;
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a beam with maximum radius of 3 cm was shifted at most 3cm off axis in = and y
when followed for 54 m. Runs with the walls at 5 cm and +£7 ¢cm were done with
both round and square pipes. The runs had a tune depression of 60° to 20°, with the
thermal v, the same as the thermal v, . Other parameters were: a beam major radius
of 3.05 cm, a beam minor radius of 1.88 cm, a current of 5.22 Amperes, a beam length
of 1.2 m, a ratio of taper length to total beam length of 1/5, an initial RMS V, of
2x10* m/s, an ¢; of 16 mm-mrad, and a Vjeam of 1.27x107 m/s. The beam travelled
through a lattice of magnetic focusing quadrupoles with a half lattice period of .6 m,
quadrupole length of .2 m, and a focusing strength of 14.9 Tesla/m. The number of
simulation particles was 50000 and the grid cell size was 64x64x128. The runs took
about 22 minutes on the NERSC C-90.

The fluctuations of the beam centroid depended only very weakly on the pipe
shape. Figure 4.1a compares the centroid motion of beams in the two pipes. The
biggest difference is near the end when the beam is farthest off axis. The beam in
the round pipe is pulled slightly farther off axis, since, on average, the pipe is closer
to the beam than the square pipe. There was also little difference in the fluctuations
of the emittance as shown in figure 4.1b. These runs give us confidence that the use
of a square pipe for efficiency will generally not have a deleterious affect on future
applications. When the highest accuracy is needed, the more expensive round pipe

field solver can be used.
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Figure 4.1: Comparison of beams in round and square pipes. a) Centroid position,

the beam in the round pipe is pulled slightly farther off axis because the pipe is closer
to the beam, b) X emittance.
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Chapter 5

Drift Compression on MBE-4

The MBE-4 experiment is a heavy ion accelerator that was designed to examine
various aspects of the propagation and acceleration of space charged dominated heavy
ion beams for heavy ion fusion. One series of experiments studied the effects of
axially compressing the beam by imposing an initial head to tail gradient in the
axial velocity. The results showed anomalous increases in the transverse emittance,
increasing with the compression factor. Theory suggested that a compressing beam
in pure quadrupole fields should not experience any emittance growth. The WARP3d
code was used to simulate these drift compression runs. The effects of various initial
distributions, non-linear focusing fields, and image charges have been examined. The
dodecapole field and other non-linear fields had the largest effect toward increasing the
emittance during compression. (In this chapter, the emittance referred to is always

the unnormalized emittance.)

5.1 MBE-4 Results

After the beam is launched from the source, the tail of the beam is accelerated more
than the head giving the beam a head-to-tail velocity gradient, or velocity “tilt”. This
is done through the first five lattice periods. At this point, the beam is allowed to
drift, letting the tail of the beam advance toward the head. This compresses the beam
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L] Ty | G 5™ | ]
1:1 0.9-1.1 1.0-1.2
1.5:1 0.9-1.1 0.9-1.0
3.7:1 1.3-1.6 1.6
7.4:1 >2.8-3.2 | >1.7-2.0

Table 5.1: Results of the MBE-4 drift compression experiment. The data is taken
from reference [17].

axially and raises the line charge density. Both mild and more aggressive compression
schedules were run. The mild compression shots have a head-to-tail velocity tilt of
about five percent, which increases the line charge density by roughly one half over
fifteen lattice periods. The most aggressive shots have a head-to-tail velocity tilt of
twelve to thirteen percent, increasing the line charge density by a factor of 7.4.

The mildly compressed shots show little or no emittance growth. The more aggres-
sively compressed beams show significant emittance growth; growths up to a factor
of three were seen. The transverse trace space plots for these shots show a spread-
ing that resembles “bow ties” or “butterflies”. Near the edge of the beam, there is
a significant spreading in transverse velocity. Table 5.1 gives the emittance growth
versus compression factor and the emittance growth along the accelerator for the case
with the highest compression. The trace space and beam profile for both high and
low initial velocity gradients are shown in figure 5.1 and figure 5.2. The figures show
sixteen plots of the trace space at increasing times along the beam, halfway between
two quadrupole elements. The slope imposed by the alternating gradient motion was
removed by subtracting it from z’. These experiments are discussed more fully in
reference [16].

The MBE-4 lattice is a syncopated FODO lattice; one drift section is longer than
the other. This was done to allow room for the diagnostics which were placed in the
longer drift section. The following are the parameters describing the lattice and are

the parameters used in the simulations.

Half period length = .2286 m
Quadrupole length = .1 m
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Figure 5.1: Experimental results for the mildly compressed beam. The picture on the
left is the beam profile (vertical axis is time). On the right are sixteen trace space
plots at the times given. The trace space is fairly undistorted. These plots were
produced by W.M. Fawley of LBL.
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Figure 5.2: Experimental results for the aggressively compressed beam. The picture
on the left is the beam profile (vertical axis is time). On the right are sixteen trace
space plots at the times given. The trace space shows “wings” near the transverse

edge of the beam. These plots were produced by W.M. Fawley of LBL.
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Long drift length = .1857 m

Short drift length = .0715 m

Beam Aperture = 54 mm

Electrode diameter = 40 mm

Electrode end gap = 1 cm

Voltages on quadrupoles = 0 V and -17100 V

5.2 WARP3d Model of MBE-4

An attempt was made to get close to the parameters that are typical to the MBE-4
experiments. There are some differences due to use of a matched beam in the envelope
code (used for particle loading) so the results are not confounded by emittance growth
and oscillations from mismatches. The following are the initial beam parameters used

in WARP3d.

Current = 5 mA

Energy = 180 keV

Atomic Mass = 132.9 amu

Charge State =1

Envelope size at center of long drift section = 7.52 mm
Envelope angle at center of long drift section = 20.9 mrad

Emittance = 16 mm-mrad

The code has all of the essential physics required for a semi-quantitative model
of the MBE-4 experiment, including alternating gradient focusing, non-linear electro-
static self fields, and image charges. Some of the major details are examined.

The syncopated FODO lattice was included in WARP3d. The evenly spaced
lattice was also used in the early runs, though differences in the lattice had little
effect.

The quadrupole focusing can be modelled either ideally, with pure focusing fields,

or realistically, with conductors. The ideal applied, external focusing fields are sharp



CHAPTER 5. DRIFT COMPRESSION ON MBE-4 59

edged and have no fringe fields nor any higher order, non-linear multi-pole fields as-
sociated with real quadrupole elements, except the dodecapole field. The dodecapole
field is the next higher field that has the same symmetry as the quadrupole field and
is the dominant higher order field. On MBE-4, this field is 3.5% of the quadrupole
field at the pole tip. The internal conductors give both fringe fields and higher order
components of the fields, including the dodecapole field, implicitly as part of the field
solution. See section 2.2.5 for details.

Two others effects that are part of the self-consistent field solutions are the energy
effect and axial fields. The energy effect, the variation in the transverse plane of the
electrostatic potential and hence particle axial velocity, is discussed in more detail
in the chapter on modelling the ESQ injector. It is a smaller effect here than with
the injector. The potential at the pole tip is about 5% of the beam axial kinetic en-
ergy. The axial fields are the result of both the inter-digital structure of the focusing
quadrupoles and the relation between the ground potential of the pipe and the po-
tentials of the focusing quadrupoles. They are thought to have little effect since they
do nothing more than make the beam slightly mismatched from the variation in axial
velocity. Also, in the experiment, the beams with lower compression ratio experience
the axial fields (with only small transverse variation) and show no emittance growth.

In order to reduce the number of voltage sources for the electrostatic quadrupoles
in MBE-4, one side of the quadrupoles were held at ground, while the others were
charged to minus twice the necessary focusing voltage. This would be no different than
charging at plus and minus the focusing voltage, except that the surrounding walls
are held at ground. This was thought to have little effect on the beam behaviour. The
major effect would be changing the axial fields which has minimal effect on the beam.
Though the potential arrangement does change the higher order field components,
the change is small. Overlays of the Vjp and V4 components are shown in figure 5.3.

The effects of image charges in MBE-4 are included either implicitly or explicitly
in WARP3d depending on the method of field solution. Images charges on the square
pipe are included implicitly. The potentials on the square pipe walls are held at
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Figure 5.3: Comparison of field components with anti-symmetric (£V/2) and nonanti-
symmetric (0 and —V') quadrupole voltages. Solid is nonanti-symmetric voltages, and
dashed is anti-symmetric. a) shows Vg, the potential on axis. b) shows V5, and c)
shows V44. The rest of the components are nearly identical. The quadrupoles extend

from Z =-.13575 to -.03575 and Z =.03575 to .13575.

ground, and no image charges are present on the walls. In the FF'T field solver sine-
sine transforms are done so the potential on the boundaries is zero. With the capacity
matrix solver, used with round pipes and with simple quadrupole structures, the im-
age charges are explicitly calculated from the capacity matrix. The image charges
force the potential on the conductor surfaces to zero. With more complicated struc-
tures that require the SOR field solver, image charges are again included implicitly
when the conductors are held at specified voltages.

Care was taken to be sure the beam was initialized correctly. When the simple
ideal focusing model is used, the beam can be loaded in its entirety directly into the
focusing channel since only transverse electric fields are applied; there are no applied
fields in the z direction. In a self-consistent focusing lattice, though, there are fields
in the z direction, from the energy effect and from the axial fields described above.
When a beam is loaded directly into these fields, it rapidly becomes badly distorted.
The axial fields cause bunching and debunching, leading to peaks and valleys in the
line charge density. The energy effect causes a mismatch. Particles off axis have a
differing axial velocity then those on axis and therefore receive differing focusing (or

defocusing) impulses.
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The problem was avoided by injecting the beam from a plane in the center of
the long drift section. At that plane, there are essentially no external transverse
fields (and so no energy effect) and no axial fields because of symmetry. The beam is
injected with a constant axial velocity and a tilt is applied after the beam has been
completely injected. To shape the ends of the beam, the number of particles injected
in the end was varied so the parabolic falloff in A was maintained. No effort was made
to adjust the beam envelope in the ends-the same envelope used in the beam center
was used in the ends. In order to compare like beams, the beams were injected in the
same manner in runs with ideal focusing.

One problem with injecting the beam is obtaining correct axial self-fields. The
head of the beam, which is injected first, starts blowing off after beam is injected
behind it. Only the first ten centimeters out of 1.2 meters are affected, and the
effect is an increase in axial velocity by less then 10%. The center of the beam is
undisturbed. In addition, when a particle is injected, there is almost no space charge
behind it and so it is decelerated by the space charge in front of it. This only lasts
for at most one or two timesteps until enough beam is loaded behind the particle
to balance the space charge in front. Depending on where the particles is initially
placed within the injection region, it will have differing amounts of space charge
behind it. Particles will thus receive differing amounts of deceleration, causing an
axial thermal spread. The net drop in axial velocity is typically less then .1% of
the axial velocity and the thermal spread less than .01% of the axial velocity. Both
of these space charge effects are small and can be tolerated. If it were necessary
to correct further, an artificial half-beam upstream of the injection region could be
introduced by appropriate loading of the charge-density array.

Some effort was made to have the diagnostics of WARP3d match those of MBE-
4. The WARP3d and MBE-4 diagnostics are most naturally computed in different
frames of reference. The diagnostics of WARP3d are calculated as a function of z
(axial coordinate) at a single time, while on MBE-4 they are measured as a function

of time at a single z. The particles used in WARP3d’s calculation of moments and in
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the trace space plots are taken from within a finite range of z values. In MBE-4, the
diagnostics are taken at a fixed location in the lab frame and can only be taken within
a finite range of time. The best compromise in the code is to take fairly narrow ranges
of z and to do the calculations frequently. The ranges have to be narrow enough to
avoid longitudinal effects, such as rotation of the # — 2’ (or y — y’) trace space ellipse
from the alternating gradient focusing, but wide enough to contain enough particles
for good statistics. The range that is usually used is 1 cm. The particle position and
velocity are extrapolated in time to the centers of the range in z to further reduce any
longitudinal effects. From this, data at diagnostic stations in the laboratory frame
are saved to build up a profile versus time. Machinery for calculating moments at
locations in the beam frame and the laboratory frame are described in section 2.1.4.
The particle data that is extrapolated for the moments calculation can also be used
in particle plots.

Another detail is the display of trace space plots. From the way the data are
taken on MBE-4, the slant of the ellipse from the alternating gradient focusing is
automatically removed. A parallelogram is laid over the ellipse of the beam and two-
slit measurements made only within it. In WARP3d, the slope is calculated from the

particle moments. In z, the slope, s, is given by
v/
Sy = —=sign(X X' — X X'). (5.1)
X
The “sign” function returns the sign of its argument, the are root mean square values,
and the are average values. The data plotted on the vertical axis is then 2’ — s,z for

the z trace space plots, and y’ — s,y for the y trace space plots.

5.3 WARP3d Results

In the simulation of the drift compression experiments, there was no attempt to make
a one-to-one comparison between the experiment and the simulations. To do this,
one would need to include the accelerating fields which supply the axial tilt which can

not be done cleanly in WARP. (The algorithm used to apply the accelerating fields
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Figure 5.4: Time history of the line charge at mid-pulse of an ideal compressed beam.
The solid line is for the most aggressively compressed beam.

assumes the the field is constant in time. As the fields needed to produce the axial
tilt are time dependent, the application of the field may not be accurate.) One other
major problem is the lack of data from the experiment. Most of the data taken was
in one transverse plane. Little data was taken in the other transverse plane. This
makes it difficult to obtain a beam distribution and any offsets from the axis in that
plane.

We started the simulations with an idealized case. Semi-Gaussian beams (uniform
in space, Gaussian in velocity) that were thin and well separated from the square
pipe walls, with varying linear axial velocity gradients, were sent through a purely
quadrupole, hard edged, focusing channel. The walls were 60 mm from the beam
center. The simulation with 15% axial velocity gradient resulted in a line charge
growth of nearly a factor of 5. The most aggressive compression on MBE-4 gave a
line charge growth factor of 7.4 by comparison. Plots of the line charge density at
the center of the beam and initial and final distributions for runs with 5%, 10% and
15% initial velocity tilts are shown in figures 5.4 through 5.8.

The runs showed only slight emittance growth, on the order of 10 - 20% for the
most aggressive compression. This was due mostly to a numerical artifact associated

with an insufficient number of particles. Increasing the number of particles reduced
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Figure 5.5: Initial distribution before compression. The tilt shown in the z — V, plot
is the “aggressive” tilt. The curl at the head of the beam is an artifact of the loading
via injection.
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Figure 5.6: Final distribution after compression with 5% velocity tilt.
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Figure 5.7: Final distribution after compression with 10% velocity tilt.
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Figure 5.8: Final distribution after compression with 15% velocity tilt.
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Figure 5.9: Time history of €, and 2X,,,s of an ideal compressed beam. The mid-pulse
emittance curves show the result for two different numbers of simulation particles.
The top dashed curve is with 73574 particles and the bottom solid curve is with
294332 particles. The vertical axis is in normalized units.

the amount of growth. The x emittance of the center of the beam versus time for
runs with differing numbers of particles is show in figure 5.9. The trace space shows
no distortion. Figure 5.10 shows the trace space for the most aggressively compressed
beam. The behavior in the y direction is similar.

The growth in line charge was smaller since the axial fields are larger for a beam
in a large-bore metal pipe than for a beam surrounded by quadrupole conductors.

The axial fields can be written as

E, ~ —g% (5.2)
where ¢ is a geometrical factor and is given by In S Here, a and b are the beam radius
and the pipe radius respectively. Thus, for a larger metal pipe, g is larger and so the
axial field is larger (the images in the pipe walls are so far away that they do little
to counteract the self-field potentials). This retards compression, and so the beam
turns around earlier and starts expanding. Figure 5.11 compares the axial potentials
of a beam in various pipes. The highest curve is with the walls at 60 mm. The axial

electric field, the gradient of the potential, is therefore the largest at the ends of the
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Figure 5.10: = — 2’ space of aggressively compressed ideal beam at four times in the
middle of the drift section of the fifteenth lattice period. No distortion is evident. The
times are relative to the time at which the center of the beam crosses the diagnostic
location. The same AG slope was subtracted in all four plots. The figures at £+ 2.15
ps show the change in the slope from the effect of the velocity gradient.
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Figure 5.11: Self-potential of a beam in MBE-4 on axis. The double dashed line is
with square walls at 60 mm and therefore has the highest value. The single dashed
line is with square walls at 27 mm and therefore has the lowest value. The dashed
line is with quadrupole rods only (pole tips at 27 mm). The solid line is with the full
inter-digital structure including endplates. The last two also have surrounding walls
at 60 mm. The peaks occur in the drift section where the surrounding wall is the
only nearby conductor (as there are no quadrupole structures there).

beam.

Various perturbations were then added onto the semi-Gaussian distribution to
examine possible causes of emittance growth. These included a ripple in v,, to model
possible high frequency errors in the accelerating fields on MBE-4, and mismatches,
to model possible errors in the MBE-4 source. These two perturbations did result in
additional emittance growth. A high frequency perturbation, with wavelength roughly
one tenth the beam length, gave only slight emittance increase. A lower frequency
perturbation, with wavelength equal to one half of the beam length, resulted in more
growth, nearly 50%. Since this growth is less than what was seen in MBE-4, and
more importantly, because the trace space plots did not show the distinctive “bow
tie” shape, the velocity perturbation was thought not to be a major contributor to

the emittance growth seen in MBE-4.
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The beams were mis-matched by computing a mis-matched beam envelope so-
lution and loading the beam with it. (The initial semi-major and minor radii of
the envelope were changed to give the mis-matched solution.) This mismatch of the
beam leads to additional emittance growth with the severity determining the amount
of growth. A slight mis-match, changing the initial semi-radii of the envelope by less
than 10%, results in no emittance growth. A more severe mis-match, changing the
semi-radii by 50%, increased the emittance by 50%. Also, there was growth for both
the mildly and aggressively compressed beams. These results led us to believe that
the mis-match is not the cause of the emittance growth in the experiment.

Beams with a hollow distribution were also examined. Diagnostics from MBE-4
showed initial beams with non-uniform transverse distributions. Hollow beams were
tried as an approximation. The transverse distribution that was used is given in
equation 2.30. In the time scale of a plasma oscillation, the hollow beam collapses
to a more uniform distribution. Most of the emittance growth, an increase by about
30%, occurs in this time. During the rest of the run, the emittance does not grow
any more than with the initially uniform beams. The trace space plots do show a
distinctive shape. The ends of the ellipse are bent in a counter-clockwise direction.
The particles near the edge of the beam experience stronger space charge forces since
more of the beam is away from the center. The focusing is lessened and the particles
begin to lag behind in the rotation of the trace space ellipse. This behaviour is also

seen in the experiment when beams are hollow. See figure 2 of reference [17].

5.3.1 Dodecapole and Image Fields

The higher order, nonlinear, dodecapole field was added to the externally applied fo-
cusing field. Beams that underwent mild compression showed little emittance growth
in the presence of the dodecapole field. Beams that underwent more aggressive com-
pression, though, did show moderate emittance growth. As a beam compresses, it
expands transversely, maintaining a nearly constant charge density. Most of the emit-

tance growth in these runs occurred near the end of the run when the beam radius
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Figure 5.12: Time history of the ¢, and 2X,, at the center of an aggressively com-
pressed beam with an applied dodecapole field. The peaks near peak compression are
a result of the dodecapole field. The peaks don’t form until the beam radius expands
to 18 mm.

expanded to more than 18 or 19 mm. Less aggressively compressed beams that started
with a bigger radius also showed significant emittance growth as the beam expanded
to a radius of 18 mm. At this point, the dodecapole electric field, which increases as
r®, begins to affect the beam.

The increase in emittance observed for the most aggressively compressed beam
was a factor of one third times the initial emittance. The history of the emittance is
shown in figure 5.12. The trace space plots show evidence of the distinctive effect of
the dodecapole. The trace space of the aggressively compressed beam in figure 5.13
can be compared to the trace space shown in figure B.4 of appendix B. The wings
in the plot at 0 us resemble the wings that appear in figure B.4. These appear since
the beam has just exited a quadrupole which is focusing in y, so the dodecapole most
affected the particles with large y.

The transverse beam profile formed a rectangle. This again is a result of the
dodecapole field. The “tips” of the initial ellipse are pushed in from the additional
focusing force of the dodecapole while the beam near the “corners” is pulled out from

the dodecapole field which has the opposite sign. Figure 5.14 shows the profile at two
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Figure 5.13: z — 2’ space of an aggressively compressed beam with an applied do-
decapole field at four times in the middle of the drift section of the fifteenth lattice
period. The beam shows structures that resemble figure B.4.
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Figure 5.14: Transverse profile of the beam undergoing aggressive compression. The
square shape is a result of the dodecapole. See text for more explanation.

locations along the accelerator. The shape is not the expected hexagon since when
the dodecapole has the most effect, inside of a quadrupole, the beam is very elliptical.
Only the parts of the beam near the ends of the major axis are affected.

The image charges and the geometric parameter, g, described above are next
examined. The same initial runs as above were done but with the walls much closer
in, 27 mm from the beam center, the location of the pole tips. This decreased the
value of g. No dodecapole field was applied. The line charge did increase more, as
expected. The line charge for the three compression schedules are shown in figure
5.15. The compression was slightly more than would be expected for MBE-4 since
the square walls are on average closer to the center of the beam than the quadrupole
conductors are. Also, in MBE-4 between quadrupole elements, the walls are much
further away, further reducing the average ¢ for the quadrupole conductors. In figure
5.11, the lowest curve, and hence the curve with the lowest gradient or axial electric
field, is with the walls at 27 mm. Above it are two cases with quadrupole conductors
present.

With gentle compression, little additional emittance growth was seen as the ex-

pansion of the beam did not bring it close to the wall. However, significant emittance
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Figure 5.15: Line charge at mid-pulse of a compressing beam in a small pipe. The
pipe walls are at 27 mm.
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growth was seen with aggressive compression. The transverse expansion from ax-
ial compression puts the edge of the beam close to the walls. The images create a
significant attractive force which distorts the trace space of the beam. Figure 5.16
compares the F, field for a beam far away from the walls and for a beam close to the
walls. The F, field for a beam far from the walls is the linear self-field, with a drop-off
outside the beam. With a wall close by, there is an additional expanding force from
the attraction to the oppositely charged images on the wall; the field within the beam
becomes non-linear. This non-linear force creates an essing in the trace space, which
can be seen in figure 5.17. The figure also shows the resulting emittance history.
The emittance growth seen in this run is higher than that which would be seen from
images on quadrupole rod surfaces, since on average the square pipe will be closer to
the beam than rods with pole tips at the same location.

Runs combining the dodecapole field with a small surrounding pipe resulted in
emittance growth similar to that in the runs using either one separately. Figure 5.18
shows the emittance history and the resulting trace space near peak compression.
With the increase in line charge at peak compression as compared to the case with

the walls farther away, the beam radius also increases. This should lead to a stronger
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Figure 5.16: Comparison of the self-potential of a beam close and far from the wall.
The solid line is with the walls at 60 mm and is linear. The dashed line, with the
walls at 27 mm, is nonlinear as a result of the image fields.

effect from the dodecapole. But the emittance does not increase more; the two effects
seem to cancel each other. This result supports the conclusion of reference [18]. The
image forces felt by the beam in this case, though, are not the same as felt by a
beam within a quadrupole structure. A square pipe models the images of quadrupole
conductors well when the beam is far from the conductor, but not as well when the

beam gets closer. In the next section, the image forces are modeled more accurately.

5.3.2 Inclusion of Internal Conductors

To account correctly for the image charges on the quadrupole rods, the capacity
matrix field solver was used to model the conductor geometry. The conductors were
held at ground so their only effects would be images. The beam was focused with
ideal, hard edged fields. As expected, the line charge does not increase as much as
when the walls are at 27 mm. With the most aggressive tilt, the maximum line charge
is .056 pC/m, as compared to .066 when the walls are at 27 mm. Also as expected,
less emittance growth was observed than the case with walls at 27 mm. The emittance

still increased by a factor of nearly two, though, and displayed the same essing that
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Figure 5.17: & — 2’ space and mid-pulse ¢, time history of a beam in a small pipe. The
trace space plot is of the center of the beam at the center of the long drift section.

was seen in the square pipe.

With the application of the dodecapole, nearly all of the emittance growth went
away. This further supports the findings of reference [18]. The resulting emittance
histories are shown in figure 5.19. The trace space is still distorted somewhat, though,
showing evidence of the effect of the dodecapole.

The internal conductors were then set to the focusing potential to supply the
focusing self-consistently. This gives the dodecapole field as well as other high order
multi-pole fields, fringing fields, images and the energy effect. The fields produced by
the conductors were decomposed (with no beam present) to give the multipole fields.
The dodecapole field in the center of a quadrupole is 3.5% of the quadrupole field
at the pole tip, matching the MBE-4 value. Figure 5.20 shows the dodecapole field
along one lattice period.

With aggressive compression, the emittance grows by a factor of nearly three
by the time of peak compression. The beam was slightly mismatched and at peak
compression had a larger rms z than the previous run, putting the beam edge closer
to the wall. The effect of the dodecapole is more prevalent in the trace space— see

figure 5.21. The cancellation between the dodecapole and image forces seems to break
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Figure 5.18: « — 2’ space and mid-pulse ¢, time history of a beam in a small pipe
with dodecapole. The trace space plot is of the center of the beam at the center of
the long drift section.
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down as the beam get very close to the conductor and when other non-linear fields
are present. The dodecapole has peaks at the end of the quadrupoles as shown in
figure 5.20 but these peaks will not affect the beam much since, from the alternating
gradient focusing, the beam is smaller at the ends of the quadrupole.

The beam was slightly mismatched because of the difference in the focusing fields
between the ideal fields and the fields produced from the self-consistent quadrupole
conductors. The fields in the centers of the quadrupoles are not the same due to
error in the calculation of the field. See section 2.2.5 describing the capacity matrix
field solver for more details. Also, the integral over one quadrupole (one half lattice
period) of the focusing strength is not the same as the length of the hard edged
quadrupole times its (constant) focusing strength. Furthermore, with the fringe fields,
the focusing fields die off gradually away from the quadrupole. So, a beam loaded
with an envelope solution obtained from matching to an ideal hard edged focusing
lattice will not be matched to the self-consistent lattice. The mismatch was minimized
when a matched envelope was found by scaling the focusing field so that the integrals
over one quadrupole of the focusing strengths were the same.

The last step is to include the full inter-digital structure. This was done with the
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Figure 5.19: Mid-pulse €, time histories with images on quadrupoles, with and with-
out dodecapoles.

SOR field solver described in Section 2.2.5. The SOR solver can be quite expensive
when used for time-dependent simulations. The run with aggressive compression took
nearly two hours of CRAY C-90 CPU time as compared to about twenty minutes for
capacity matrix simulations. The much richer physics of the inter-digital structure
can only be captured by a first-principles model such as the one used in these runs.

The beam reaches a higher compression than in the above runs even though the
image charges are the same. As shown in figure 5.22, A reaches a maximum of nearly
076 pC/m, as compared to .066 uC/m above. The peak occurs when the beam is
in the short drift section. That point is in a trough in the axial potential from the
inter-digital structure (location z = 0 in Vg of figure 5.3). The beam behind it is
accelerating, while the beam ahead is decelerating, causing the beam to bunch. This
creates a higher peak in the line charge. The two surrounding lower peaks in figure
5.22 are at the same spot in the previous and next lattice periods.

As mentioned above, the beam is mismatched and grows bigger than it would have
otherwise. The mismatch is seen in the oscillation of the peaks of 2X,,,s as shown in

figure 5.23. The highest peak goes beyond 27 mm, the quadrupole aperture. As only
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Figure 5.20: Dodecapole field with quadrupole rods. At z = 0 is a defocusing
quadrupole and at the ends are focusing quadrupoles.
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Figure 5.21: ¢, and 2X,,,; at mid-pulse of a beam in self-consistent quadrupole rods.
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Figure 5.22: Mid-pulse line charge time history of an aggressively compressed beam
in the inter-digital structure.

a few particles are lost there the beam size did not go beyond 27 mm, and so 2.X s
is artificially high and the beam hollow.

Much emittance growth was observed in the simulation. This is due to two effects.
The beam is mismatched and is large near peak compression, increasing the effect
of the dodecapole and other non-linear components. The second effect are the other
non-linear fields, specifically the components that are fourth order in radius. These
cause curvature of the trace space and change the transverse shape of the beam,
altering the image charges and altering how the dodecapole component effects the
beam. The trace space plots for both = and y at the center of the long drift section
are shown in figures 5.24 and 5.25. Note that the curvature is not strongly evident in
those plots since it averages out over the course of a lattice period. At other points
in the period, mainly within the quadrupoles, the curvature is evident.

The y — ¢y trace space at the center of the long drift section clearly shows the
effect of the fourth order potentials (as well as the dodecapole). Long tails result in
some places and a bow tie shape near the center of the beam can be seen. The long
tails appear only in y since the beam has just come from a focusing quadrupole in

the y plane and is bigger in y than in .
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Figure 5.23: €, and 2X,,s at mid-pulse of a beam in in the inter-digital structure.

The bow tie appears to be a result of the dodecapole fields. Figure 5.26 shows
the transverse profile and the @ — 2’ trace space near the center of the beam at the
middle of the long drift section. The “+” and “-” symbols are the particles which
have their shifted =’ above and below zero respectively. The profile shows that all of
the particles in two of the wings of the bow tie (the wing at negative & and positive 2’
and the wing at positive  and negative z') are off the y axis. The dodecapole would

have that effect. The same is seen in the 5.27 for y.

5.4 Conclusions

Runs with WARP3d using idealized beams with idealized quadrupole focusing show
less compression than is seen on the experiment, MBE-4, but showed little emittance
growth. Perturbations to the initial distribution functions and non-linear transverse
initial distribution functions increased the emittance of the beam, but the growth
tended to be independent of the amount of compression. The effects on the trace
space plots were unlike the effects seen on MBE-4.

The dodecapole field by itself has an effect on the emittance, as do the image forces

by their self. When the two were combined, the effects seem to cancel. This supports
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Figure 5.24: = — 2’ trace space at sixteen place along the beam in the center of the
long drift section. The frames are separated by 1.79 us and frame number 8 is the
mid-pulse of the beam. The minimum and maximum « (horizontal axis) are £27 mm
and the minimum and maximum 2’ (vertical axis) are +5 mrad.
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Figure 5.25: y — y’ trace space at sixteen place along the beam in the center of the
long drift section. The frames are separated by 1.79 us and frame number 8 is the
mid-pulse of the beam. The minimum and maximum « (horizontal axis) are £27 mm
and the minimum and maximum 2’ (vertical axis) are +5 mrad.
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Figure 5.26: Beam z profile and trace space with symbols based on shift 2’. This
shows the effect of the dodecapole.
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earlier results obtained using lower dimensional codes[18]. Both only affect the beam
when the transverse expansion reaches nearly 19 mm. The cancellation appears to
fail when the beam nearly touches the conductors; the effect of the dodecapole is
evident in the emittance growth and in the distortions of the trace space.

The most significant simulation includes the full inter-digital structure. It includes
dodecapole fields, images fields and octopole-like fields which result from the gaps
between the quadrupole rod ends and the endplates. Much emittance growth is seen.
The distortions on phase space show clearly the effects of the dodecapole fields as
well as of the octopole-like fields.
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Chapter 6

Electrostatic Quadrupole Injector

(ESQ)

The injector for the ILSE (Induction Linac Systems Experiment) accelerator facility
being planned at LBL will use electrostatic quadrupoles for both focusing and accel-
eration. An issue of concern is possible emittance degradation because the voltages
applied are a significant fraction of the energy of the particles and there are significant
nonlinear fields arising from the shape of the quadrupole structure. Simulations show
that octopole and octopole-like fields (¢ ~ r*) cause essentially all of the emittance
growth. We believe that the effects can be reduced by adding correcting fields which

can be created by altering the focusing structure and have pursued this.

6.1 Injector Description

The injector is required to supply 1 Amp of 2 MeV singly charged potassium ions at
low normalized transverse emittance, less than .5 7-mm-mrad. The source emits into
a diode region, or gap, with a potential drop across and enters the first quadrupole.
The potential drop across the gap gives the beam an initial kick. The size of the drop
is critical to the design of the injector. This drop needs to be as large as possible

so the beam energy is much larger than the focusing potential. However, physical
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Figure 6.1: Diagram of an inter-digital quadrupole. a) is the transverse slice and b)
is the side view. Also in b), the next quad is shown, giving the relative orientation of
neighboring quadrupoles and what the voltages would be to supply a net accelerating
voltage on axis. In the ESQ, there would be no gap between quadrupoles; they share
a common plate.

constraints, such as voltage breakdown, put a limit on this field. This limit is between
5 MV and 1 MV. The beam then continues on through several more accelerating
quadrupoles.

The quadrupoles have an “inter-digital” structure. See figure 6.1. Each has a
plate on each end and four rods. With the origin along the center of the beam line,
the two rods on the x axis are attached to one plate and the two on the y axis are
attached to the other plate. The rod lengths are less then the distance between the
end plates so there is a gap between the end of the rod and the plate to which the rod
is not attached. When the plates are charged to different voltages, the rods produce
quadrupole fields and a net change in potential along the axis. The effective length
of the quadrupole field is proportional to the overlap of the rods.

To produce a net acceleration on axis, the high voltage end of each quadrupole is

attached to the low voltage end of the previous. For example, if the first quadrupole
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has the voltages 1.5 MV and 1.3 MV applied to the end plates, the next quadrupole
would have the voltages 1.3 MV and 1.1 MV applied to its end plates. Each quadrupole
would then have .2 MV across the rods to produce the quadrupole fields and the
net potential drop across the two quadrupoles would be .4 MV. To produce alter-
nating gradient focusing, the rods attached to the plate common between the two
quadrupoles would be on the same axis.

With the high currents needed from the injector, large focusing fields are needed to
confine the beam. The particles have low energy in the injector so the focusing fields
are a large fraction of the particle energy. This results in what is called the “energy
effect”. Particles that are off axis will be closer to one rod than the others, so their
potential energy will then be significantly closer to the potential of that rod than to
that of the others. If, for example, a particle is closer to the high voltage rod, it will be
in a region with higher potential, and will therefore have a lower axial velocity than a
particle on axis. This difference in velocity will be a large fraction of the total velocity,
leading to beam distortion. If the distortion is uncorrected, it can cause emittance
degradation. Note that this effect is present in all electrostatic quadrupoles, but the
focusing fields are generally much smaller then the particle energy so the distortion
is very small. The focusing structure produces fields that are not pure quadrupole.

A variety of multipoles arise and are written as in equation 1.4.

6.2 Description of Computer Runs

The region of simulation starts within the diode. WARP3D currently does not have
the capability of space-charge limited injection so the beam is injected with constant
current. The point of injection is placed at a plane that is an equipotential. This is
also done to facilitate boundary conditions; since WARP3D works in Cartesian coor-
dinates, the boundary is given by a uniform potential on that plane. The simulations
extend past the end of the injector to give a proper boundary condition on that end.

The runs are quasi time-dependent as only a steady-state solution is desired. The
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quasi time-dependent method is the same as the fully time-dependent method except
that the time step over which the field solves are done is longer than the time step
over which the particles are advanced. At the start of the run, an initial bunch of
particles is loaded into the injector and the fully self-consistent fields are calculated.
Generally, the initial distribution loaded is cylindrical. These particles as well as
particles injected near the source flow through the previously calculated fields for
some number of time steps. The fields are then recalculated with the new positions
and new particles. The particles are then moved through the new fields. This cycle
continues until convergence, which generally is obtained shortly after one transit time
across the injector. The transient behavior of the particles is lost—only the steady-
state flow is obtained. The method is used for efficiency.

The field solutions are found using the PSOR method with internal conductors
and subgrid scale boundary placement. The fourfold symmetry option is used (see
section 2.2.5). The size of the field grid cells is limited by the need for accuracy
of the self-fields and the field grid must be large enough to include enough of the
quadrupole conductors to get good representation of the focusing fields. To meet
these requirements, on the order of 50 grid cells are needed in the transverse direction;
the beam occupies about a third and at least half of the rod is inside the grid. There
are between 40 and 50 grid cells in the axial direction in each quadrupole. The total
number of axial grid cells depends on the number of quadrupoles being simulated.
The number is typically between two hundred and six hundred grid cells. The physical
size of the grid cell depends on the scale of the system. In figure 6.2 the field grid is
shown laid on the conductors and beam.

The injected particle distribution is a semi-Gaussian with a circular transverse
profile. Typically, the number of particles used ranges from 70,000 to 300,000 total,
with several hundred injected at each time step. Fewer particles lead to numerical
problems and more particles are not necessary. Comparisons of runs with 70,000 and
300,000 particles showed little difference, though the runs with 70,000 were somewhat

noisier.
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Figure 6.2: The field grid is shown here overlaying part of the system. The dots are
the beam particles, the contour lines are lines of constant potential, and the gray
areas are the conductors.

The transit time of typical runs is between 300 and 1000 time steps, depending
on the time step size and number of quadrupoles. Another 100 to 200 steps are done
to ensure convergence. The number of cycles, or field solves, was between five or ten.
Most of the parameter searching runs were done with the bigger time step, 300 steps
per transit time. Runs with a smaller time step were done occasionally to ensure that
there were no numerical problems.

As a further check for numerical problems, fully time-dependent runs were made
and compared to quasi-time-dependent runs. No difference was found. As check
on convergence, longer runs were made. They were run over several transit times.
Shortly after one transit time the beam reached a steady state and maintained it
throughout the rest of the run.

The fields that arise from the conductors can be decomposed into the multipole
components. This is done by first calculating the potential with no beam present.
The Vi of equation 1.4 are calculated by a least squares fit of the calculated potential
to the truncated expansion. Typically, only terms out to & = 6 are calculated. This
leaves ten terms and ten coefficients (Voo, Va0, Va2, Vio, Va2, Vaa, Veo, Vo2, Vea and Vig)

in the expansion. The expansion is fit to the potential at a number of grid points
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near the center of the beam. Typically 64 grid points are used in a square 8 points
on a side with a corner of the square on the beam centerline.

All of the simulations were run on a CRAY C-90 YMP supercomputer. The CPU
time used was as low as 3 minutes for runs with 70,000 particles and 5 field solutions
over the course of the run for a total of 390 time steps. The bigger runs took up to 20
minutes of CPU time, with 280,000 particles, 10 field solutions, and 1560 time steps.

6.3 ILSE Scale Injector

The first simulations that were done were of the full scale ILSE injector with a .5 MV
diode. The initial design of the injector was done by E. Henestroza of LBL with an
envelope code. This code did not include the energy effect and the non-linear fields
from the conductors. The main design criterion was to reduce the size of the envelope
to minimize the effects of the non-linear fields. The parameters of the injector are
given in table 6.1. The initial run with WARP3d showed a very large emittance
growth. Figure 6.3 shows the normalized emittance along with the beam profiles and
potential drop on axis. Note that the sharp rise in emittance in the y direction follows
shortly after the widest part of the y envelope, and similarly in the x direction. The
location z = 0 is the position of the actual source. In WARP3d, the beam is injected
about half way between the true source and the first quadrupole, through a plane
which is approximately an equipotential.

This emittance growth is not true emittance growth but results from the twisting
or “essing” of phase space, which can be undone. The y — 3’ phase space at several
points along z is shown in figure 6.4. The first is at the point where y emittance is
greatest. The second is near the middle of the third quadrupole element where the
velocity from the AG focusing is small. The essing is clearly shown here. The third
is near the end of the injector. Most of the essing vanishes, but the distortions have
heated the beam somewhat. Long tails are also present.

The shape of the phase space, the essing, indicates action of fourth order (in
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ILSE injector | Scaled experiment

Beam current (Amps) 0.8 0.008
Initial beam radius (cm) 6.0 0.9
Quad voltages® (kV) 220.0 10.3
260.0 12.2
260.0 12.2
255.0 11.97
255.0
250.0
Quad length®
First quad 31.0 7.15
Others 47.0 11.155
Rod length (cm)
First quad 25.5 5.89
6.195°¢
Others 39.5 9.7
Apertures? (cm) 13.0 3.25
12.0 3.0
11.0 2.75
10.0 2.5
9.0
8.0
8.0
Plate width (cm) 1.0 .6

?The ILSE scale injector has either four, five, or six quads depending on the diode voltage. The
scaled injector has four quads.

bDistance between center of plates.

“The rods of the first quad are not the same length.

4Distance from beam center to the rod. Rod radii are 8/7 of the aperture.

Table 6.1: Parameters for ILSE injector and scaled injector experiment. The ratio of
the diode voltages is the same as the ratio of the quadrupole voltages.
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Figure 6.3: Initial ILSE injector results. The top curve in the emittance corresponds
to the y profile. The curves surrounding the beam profiles are the RMS envelopes.
The rectangles are the quadrupoles. Note that the peak in emittance follows shortly
after the widest part of the profile. The gaps between the particles and the RMS
envelopes result from bunching near the beam edge.
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Figure 6.4: ILSE injector phase space at various locations along the injector. The
peak in the Y emittance occurs at Z = 1 meter.

potential) fields, @4,,. See Appendix B. The same runs as above were carried out,
but cancelling out the various fourth order fields. The negative of the fourth order
fields, obtained from multipole decomposition, was applied to the beam to cancel the
fields. Cancelling the pure octopole field, ¢44, and the ¢4 field had little effect on
the emittance growth. Cancelling the ¢45 field however, had a dramatic effect on the
emittance; it was cut in half. Figure 6.5 shows the resulting emittance and phase
space.

Plots of the forth order field strengths are shown in figure 6.6. Both V,, and Vi,
change sign over one quadrupole element. Coupled with the fact that the energy
changes little inside a quadrupole, the effect on the beam nearly vanishes with inte-
gration over one quadrupole. The V5, on the other hand, does not change sign over
one quadrupole element. With integration over one quadrupole, its effect builds up.
However, its sign does change from quadrupole to quadrupole, partially cancelling
itself. The cancellation is not complete since the envelope and the energy of the
beam change. The large effect in y of the ¢4, field of the first quadrupole is partially
cancelled by subsequent quadrupoles and the emittance decreases.

The remaining emittance growth is caused by the energy effect. In figure 6.7,
z — v, phase space, the energy effect can be seen. It is the broadening in the flat

portions, which are inside the quadrupoles. The effect is most evident in the second
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Figure 6.5: Injector results with Vi, cancelled. The higher curve in the emittance is
the Y emittance.
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Figure 6.6: Fourth order fields in the ILSE injector.
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Figure 6.7: Axial phase space in ILSE injector. The periodic broadening is from the
energy effect.

quadrupole, between .5 and 1 meter. The beam energy is low and the beam profile
is fairly wide, enhancing the spreading of v,.
The energy effect was analyzed by S. Yu of LBL by studying the equation of

motion of a particle in the fields. The Lorentz equation for v, in the potential ¢ is

given by
dv, e 06 (1
A A 6.1
dz m Oz <vz> ’ (6.1)
where ¢ is as is in equation 1.4,
e
v, = Uy/1 — T(é (6.2)
is the velocity along the axis,
2T
0 =1/ — 6.3
Uz0 m (6.3)

is the axial velocity on axis, and 1'/e is the potential drop on axis. The i results
from the conversion from dt to dz. The expansion of equation 6.1 to second order in
potential results in the linear equations of the motion of a particle in quadrupole fields.
Expansion to fourth order in potential gives the perturbations from the non-linear

fields. The resulting expression for the perturbation in v, is

dvg, P L[ Vi ’ Via 9 (r\*
dz 2 { g(To/e) +(T0/e) l_(}_x (E) COS40]+
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The terms in Vj,, Vs, arise from the interaction of the terms 22 and - Wthh represents

el
B

the energy effect. It is the interaction of the focusing fields and the energy difference
between off axis particles and the beam center. The terms in V},, arise from %, the
quadrupole structure.

The energy effect can be cancelled as the fourth order fields were, by applying the
appropriate fields to the beam. The correcting fields should, on integration over one
quadrupole, cancel the energy effect. Over one quadrupole, the term V55V changes
sign; its integral nearly vanishes. The term (Vy)? is small compared to (V3;)? and so
can be ignored. This leaves only (V32)? as significant. The correcting fields that are
then needed are V7" and V3.

Since (V3,)? has the same behavior in the first and third lines of equation 6.4, V5"

and V3" should have the same value. The sizes of V" and V3", which are scaled by

Vaq, are given for each quadrupole by €V,,, where

o _% quad (TV/) / /d(TV/) 63

The applied fields are V3 (r/R)* and V5 (r/ R)* cos40. They are scaled by Vi, with

the idea that they would be applied along with or from the quadrupole rods.

The correcting fields reduce the emittance growth by nearly a factor of two. The
decrease in emittance is continuous along the injector after the first peak. Compare
the emittance in figure 6.8 to the emittance with no applied corrections, figure 6.3.
The initial peak from the ¢4 fields is still present. The phase space in the third
quadrupole is also shown in figure 6.8. The tails of the esses are shorter than in figure
6.4.

One more run was done where both corrections were done; the fourth order fields

were cancelled and the energy effect was corrected. The plot of the emittance, figure
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Figure 6.8: Injector results with energy effect correction. The higher curve in the
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emittance is the Y emittance.

6.9, shows that there is essentially no emittance growth and all of the essing in the
phase space has disappeared. We conclude that essentially all of the emittance growth

resulted from the fourth order potentials and energy effect.

6.3.1 1 MYV Diodes

The injector was also simulated with a diode energy of 1 MV. It is expected that this
case will shown less emittance growth than the .5 MV case. By increasing the energy
before it enters the ESQ, the beam is stiffer and maintains a smaller envelope, reducing
the effect of both the nonlinear fields and the energy effect. Also, with a higher beam
energy, the energy effect is directly reduced. The results of the simulation of an
optimized injector with 1 MV diode are shown in figure 6.10. The focusing voltages
were optimized to reduce the size of the envelope. As expected, the growth is much
less than with the .5 MV diode. Application of the correcting fields further reduced
the emittance as in the .5 MV case. This result shows that if a 1 MV diode can be

realized in the experiment, very little further work is needed to optimize the injector.
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Figure 6.9: Injector results with both corrections. The emittance becomes flat and
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6.4 Self-Consistent Corrections and Optimization

The goal of these simulations was to reduce the emittance from the injector to an
acceptable level. We have shown that the growth is purely a result of external fields
and that it is possible to reduce the emittance growth by altering those external
fields. No beam manipulations need to be done. We then sought to do this in a
self-consistent manner, altering the conductor geometry to alter the external fields
appropriately. This was done for a scaled .5 MV diode injector to match the injector
experiment performed at LBL.

The parameters of the experiment are given in table 6.1. The physical dimensions
are scaled by a factor of four, and the voltages are scaled by a factor of roughly 21. In
this experiment, the beam passes through a grid just before it enters the quadrupoles.
The grid is an equipotential and is used as the injection plane in WARP3d. At the
end of the injector, a plane at ground potential is used to represent the experimental
diagnostic. (It is either a two-slit device to measure phase space, or a Faraday cup
to measure current.)

The first step was to further optimize the envelope and to make it as small as
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Figure 6.10: Injector results with a 1 MV diode. The emittance growth is much
smaller than with the .5 MV diode. The quadrupole voltages are 176kV, 338 kV, 338
kV, and 255 kV.
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Figure 6.11: Scaled .5 MV injector with optimized voltages. The voltages are opti-
mized to minimize the size of the envelope.

possible. That reduced the emittance by only a small amount as it was already
somewhat optimized with the envelope code. The minimization of the envelope is
limited. The best solution that could be obtained for the scaled injector with the .5
MV-equivalent diode is shown in figure 6.11. The quadrupole voltages and apertures
are given in table 6.2. Though limited, this optimization reduced the emittance to a
satisfactory level in the injectors with a 1 MV diode. In the scaled experiment plots,
the location z = 0 is the edge of the first plate.

Fourth order fields can be altered by changing the structure of the quadrupole.



CHAPTER 6. ELECTROSTATIC QUADRUPOLE INJECTOR (ESQ) 103

Quad Voltages (kV) Quad Offsets (mm) Final ¢, Final ¢,
1 2 3 4 1 21 3 4 | (mm-mrad) | (mm-mrad)
a | 103 | 12.2| 12.2 | 11.97 .25 A7
b | 12.36 | 13.42 | 14.03 | 9.87 125 15
c|12.36 | 13.42 | 12.81 | 9.87 |-2.4 | -48 |3.6 |-7.2 1 121

Table 6.2: Quadrupole voltages and offsets for .5 MV scaled injector. Row a is the
voltages scaled from the ILSE injector. Row b are the optimized voltages. Row ¢ are
the optimized voltages and quadrupole offsets

It must be done in such a way that the integral of the quadrupole field over each
element remain the same; the focusing and therefore the beam envelope will then
remain optimized. The most effective structural change was found to be moving
the focusing rods out and the defocusing rods in. The rods are moved away from the
fattest parts of the beam. (The beam is at its largest inside the focusing quadrupoles.)
Many runs were done in the search for the optimal changes. The final offsets obtained
are given in table 6.2 and the results are shown in figure 6.12.

Some of the multipole fields from the quadrupole configuration with shifted rods
are compared to the fields from the configuration with unshifted rods in figure 6.13.
The field on axis, Vg, is lower with offsets since the defocusing rods are moved closer
to the axis and they have the lower voltage of the quadrupole conductors. The
quadrupole fields have differing shapes, but the integrals over each element are the
same. The Vi5 field is shown since it is the one which has the most effect on the beam.
The effect of the offsets on Vi, is to increase the field on entrance to an element and
to decrease it on exit. This reduces the effect of the field since it is cancelled more
completely. At the exit of an element, the beam feels a weaker Vj; field. The beam
then accelerates between elements and and then feels at the entrance of the next
element a stronger Vj, that is of opposite sign than of the previous element. Since
the beam is stiffer from the acceleration, the effect of the field is weakened, so the

stronger Vjy cancels the Vj; field from the previous quadrupole more completely.



CHAPTER 6. ELECTROSTATIC QUADRUPOLE INJECTOR (ESQ) 104

Beam Profile

Normalized Emittance (mm-mrad)

Figure 6.12: Scaled .5 MV injector with optimized voltages and rod offsets. The
voltages are optimized to minimize the size of the envelope. The focusing rods are
shifted in and the defocusing rods are shifted out. This moves the rods farther away
from the beam, reducing the effect of non-linear fields, while maintaining the same
quadrupole focusing field.
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Figure 6.13: Comparison of multipole fields in the scaled injector with and without
offsets. The dashed curves are with the offsets given in table 6.2. See text for more
explanation.

6.5 Comparison With Experiment

As a proof of principle experiment, a scaled down version of the ILSE injector was
built and tested at LBL. The experiment had the parameters as given in row a of table
6.1 and as used in the simulations in the previous section. Two series of experiments
were performed; one a scaled version of the injector with the .5 MV diode, the other
a scaled version of the injector with the 1 MV diode.

In the experiment, the two-slit emittance diagnostic did not have the same axial
position for the measurements of the results in the z direction and in the y direction.
The results in the = direction were taken with the diagnostic 1.1 inches past the end
of the fourth quadrupole. The diagnostic was .88 inches past the end of the fourth
quadrupole for the measurements in the y direction. The diagnostic was modeled in

WARP3d by a plane that was held to ground potential.

6.5.1 500 kV Diode

For the .5 MV injector, a series of runs were done to understand the sensitivity of the
design to changes in the initial beam size and quadrupole voltages. The results are

shown in tables 6.3 and 6.4. In both cases, the diode voltage was 23.68 kV. The results

show that the beam can be fairly sensitive to changes. A decrease in the quadrupole
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Viac |  (em) | y (cm) | 2’ (mrad) | ¢’ (mrad) | ¢, (mm-mrad) | ¢, (mm-mrad)
0.8 17.5 9.5 80. -110. .2 .16
0.9 15.0 7.0 80. -85. .16 12
0.95 14.0 5.0 80. -80. 14 12
1.0 12.5 4.8 80. -70. 13 12
1.05 12.0 3.7 77. -50. 11 13
1.1 11.0 3.0 75. -40. .10 14
1.2 10. 2.0 80. -20. .09 A7

Table 6.3: Results of the .5 MV scaled injector with varying quadrupole voltages. All
of the quadrupole voltages are varied by the factor Vi,..

! !

Qfac x Y Z ) €y Cy
0.8 | 13.5]6.5|78.]-90. .21 | .11
0.9 | 13.5]5.5|79.|-80. .15 .10
0.95 13,5 |53 |80.|-75. | .14 | .11
1.0 | 12.5 | 4.8 | 80. | -70. | .13 | .12

1.05 | 12,5 | 4.1 | 78. | -60. | .12 | .12
1.1 | 12.0 | 3.7 | 78. | -57. | .10 | .13
1.2 | 12.0 | 3.0 | 75. | -47. | .09 | .17

Table 6.4: Results of the .5 MV scaled injector with varying initial beam radius. The
initial beam radius is varied by the factor ag,e.

voltages or initial beam radius causes nearly a factor of over one and a half increase
in the emittance in both directions. On the other hand, an increase in quadrupole
voltage of initial beam radius tends to cause a small decrease in emittance. A decrease
in the voltages will let the beam envelope grow bigger, increasing the effect of the
non-linear terms. An increase in the voltage will tend to make the beam envelope
smaller, decreasing the effects. A decrease in the initial beam radius will make the
beam expand initially and it will overshoot the nominal case. The beam will thus be
effected more by the non-linear fields. An increase in initial radius will let the beam
shrink and undershoot the nominal case. The affect of the non-linear fields will be
lessened. It is better to set the focusing voltages and initial beam radius too large.
On the experiment, data were taken with varying diode voltage. The series of

runs was simulated. Table 6.5 gives the initial data. The final results are compared
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diode voltage (kV) | current (mA) | ¢ (mm-mrad) | radius (mm) | angle (mrad)
19. 4.82 .07 9.0 0.0
25. 7.28 .07 9.0 0.0
30. 9.57 .07 9.0 0.0
35. 12.06 .07 9.0 0.0

Table 6.5: Initial data for the .5 MV scaled injector.

in figure 6.14. The simulation results agree well with the experiment.

6.5.2 1 MYV Diode

The parameters for the 1 MV diode scaled experiment were obtained with WARP3d.
(The same physical setup as in the .5 MV experiment was used.) The reduction of
noise in the current measurement put a lower limit on the current, thereby imposing
a lower limit on the diode voltage also. A value of 30 kV was chosen. To keep the
same perveance, ]/V% was kept the same in the scaling ([ is the beam current, V is
the diode voltage). This gave a current of 4 mA, which was large enough to overcome
the noise in the experiment. To obtain this current in the experiment for the given
diode energy, the beam from the source was scraped down to 8.5 mm at the entrance
to the first quadrupole (at the grid).

With those as starting values, the quadrupole voltages were varied in WARP3d
simulations to obtain the optimal, or minimal, envelope and emittance growth. Roughly
fifty runs were made, each using minimal numbers of particles and field solutions and
each requiring 3 minutes of C-90 CPU time. The quadrupole voltages that resulted
are 7.392 kV, 9.126 kV, 9.43 kV, and 9.18 kV. Note that these values are not the
same as the optimized voltages obtained for the unscaled 1 MV injector as given in
figure 6.10 since the quadrupoles are not exactly scaled. The rest of the initial data
is given in table 6.6

As in the 500 kV scaled case, data was taken for various diode voltages. The
results are compared in figure 6.15. The two agree well except in the emittance

where the errors are within the experimental uncertainty. Figures 6.16 through 6.19
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Figure 6.14: Comparison of WARP3d and experiment for the 500 kV scaled injector.
The o’s are the WARP3d results and the x’s are the experimental results. The left

column compares the x values for the set of voltages in row (a) of table 6.2. The right
column is with the quads voltage at .9 times the row (a) voltages.
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diode voltage (kV) | current (mA) | ¢ (mm-mrad) | radius (mm) | angle (mrad)
15. 1.3 .04 8.5 0
20. 2.08 .045 8.5 0.
25. 2.92 075 8.5 0.
30. 3.9 1 8.5 0
35. 4.88 1.2 8.5 0

Table 6.6: Initial data for the .5 MV scaled injector.

compare the trace space of the two. The trace space data was taken on a rectangular
grid that was slanted to match the alternating gradient slope. At each grid point is

a horizontal line whose length is proportional to the charge density at that point.

6.6 Conclusions of ESQ Injector Study

Study of the ESQ injector has given the result that, in the regime of interest, nearly all
of the emittance growth is the result of external fields only, and only fields which are
third order in r (potentials which are fourth order in r). The result is encouraging
since it affords the possibility of reducing or eliminating the emittance growth by
only changing the external fields. The external fields can be changed fairly easily by
adjusting the geometry of the conductors. Unfortunately, adjusting the conductors to
exactly cancel the nonlinear fields is difficult, though the self-consistent simulations,
including the conductors, show that much progress can be made in reducing the
emittance via simple changes in the geometry. The largest reduction (by changing
the geometry only) is obtained by moving the focusing rods farther from the beam
while moving the defocusing rods closer to the beam.

The simulations also show that a higher voltage in the diode decreases the emit-
tance growth. The beam has a higher energy in the quadrupoles so the energy effect
is smaller and the envelope is smaller. Both effects lead directly to emittance reduc-
tion. However, experimental difficulties, such as voltage breakdown, put a limit on

the diode voltage.
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Figure 6.15: Comparison of WARP3d and experiment for the 1 MV scaled injector.
The o’s are the WARP3d results and the x’s are the experimental results.
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Simulations of the scaled injector experiment show good agreement with the ex-
perimental results. This shows that the behavior of the beam in the injector is
well understood. The agreement also validates the results of WARP3d. The use
of WARP3d to design the scaled 1 MV injector experiment demonstrates that the

three-dimensional code can serve as a useful design tool.
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Chapter 7
Summary

Beam quality is a critical issue for a heavy ion fusion driver because the beam must
be focused down onto a small target with a large standoff distance between the fi-
nal focusing lens and the target. Low transverse and longitudinal temperatures are
required. The beam must not be heated too much during the transport from the injec-
tor to the target. Making that possible requires understanding of the beam dynamics
as the beam is manipulated along the accelerator. The effect of non-linear fields
and misalignments of accelerator elements must be understood. All of this must be
done including the large space-charge self-fields. Any non-linear or misaligned fields
can give a non-linear space-charge distribution which can thermalize to a uniform
distribution and a heated beam.

The necessity of including the high space-charge self-fields makes plasma meth-
ods, in particular the particle-in-cell method, ideal. Also, the fields from accelerator
elements need to be included. Many of the manipulations that the beam goes through
are inherently three dimensional; the interaction between transverse and longitudinal
must be included. These considerations all led to the development of WARP, a mul-
tiple dimensional PIC code containing an accelerator lattice model, and in particular
WARP3d, the three-dimensional package of WARP.

The simulations described in Chapters 3 and 4 are mainly test pieces for WARP3d.

Chapter 3 shows that there are no serious numerical problems, such as heating or
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instabilities, and that the code, as designed and built, is fast enough for our purposes.
A three-dimensional, high current ion beam has never been propagated nearly as
far with other codes. The main physics obtained from the results of Chapter 3 is
the approach of the ends of the beam to equilibrium and the equilibration between
transverse and longitudinal thermal energy. Both issues bear further study but are
best handled with lower dimensional codes, e.q. WARPrz, especially the evolution
of the ends of the beam since it is a slow process. Chapter 4 examines a possible
numerical problem arising from the shape of the surrounding conducting pipe as
modeled and its image fields (from the beam space-charge). The results show that
the effect of the image charges induced on the pipe is insensitive to the pipe shape.

The two applications described in Chapters 5 and 6 elucidate the damaging effects
of non-linear external fields, especially when the beam fills a significant fraction of
the channel. When a beam extends out into a region of large non-linear fields, the
trace space is distorted. If uncorrected, this distortion will thermalize, heating the
beam transversely, so that it becomes more difficult to focus.

When a beam is compressed axially, the charge density will remain roughly con-
stant (with constant focusing), forcing to beam to a larger transverse size. The results
described in Chapter 5 show that the beam can expand enough to be affected by non-
linear fields. This is of concern in the design of a driver for heavy ion fusion where
a low emittance is required. The compression must be done gently enough that the
focusing can be increased to counteract the transverse expansion.

In an injector, when the beam energy is low, large focusing fields are needed to
counteract the beam self-fields. The desired voltages can exceed the limits imposed
by voltage breakdown. When that occurs, a larger beam size must be dealt with by
minimizing the non-linear fields. The results of Chapter 6 show how the effect of the
non-linear fields can be, and indeed are, reduced.

Numerous other applications of WARP3d to heavy ion fusion are anticipated. In
addition, the numerical methods developed in the course of this thesis research should

prove useful for other applications as well.
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Appendix A

Envelope Calculation

The envelope package of the WARP code calculates the envelope of a beam in a
lattice of hard edged, uniform quadrupoles (either electric quadrupoles, or magnetic
quadrupoles) or in a uniform electric focusing field. It is principally used by the
particle loading routines for the transverse particle distribution.

The envelope is calculated in both the z and y directions. The equations for
the two directions are coupled by the self-field term. The envelope equations solved
are[14]

"o __ 2K 2 3
a —kwa—l—a_l_b—l—e/a

(A.1)
v = kb4 25 4 E/D

where a and b are the « and y envelopes semi-axis, k, and k, are the focusing fields in
the appropriate direction, K is the generalized perveance, and e is the unnormalized
emittance. The k, and k, can be any one of the focusing fields. Note that with either
of the quadrupole fields, k, = —k,, and with uniform focusing k, = k,. The k, and
k, are nonzero within a quadrupole, and zero outside. For uniform focusing, k, and
k, are nonzero everywhere. For electric quadrupole focusing, k, (and —k,) is given
by

b= Ze dEl,’ (A.2)

Aayv? dz

where 7 is the charge state of the beam ions, e is the charge of an electron, A is the
mass of the ion in atomic mass units, « is the conversion factor from atomic mass
units to kilograms, v is the beam velocity, v is the usual relativistic factor, and F,
is the electric focusing field in the z direction. For magnetic quadrupole focusing, k,

(and —k,) is given by

Ze dB,
Aayv dx’

ke = (A.3)
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where B, is the magnetic focusing field in the y direction. For uniform focusing, k,
(and k) is given by
Ze dE,
© Aaye? dr’
where F, is the radial electric field, and r is the radius. The generalized perveance is
given by

(A.4)

R 1Ze
K= 2negAa(vy)? (A-5)
where [ is the beam current, and ¢, is the permitivity of free space. In equations A.2
through A.5, all of the quantities on the right hand sides, as well as the emittance,
are input quantities.
The envelope is calculated starting from initial values. From there, the envelope is
advanced with the isochronous leap frog method with z as the independent variable.
The steps for the x envelope are

a;+% =al + %F(ai)dz
a1 =a;+a;,dz (A.6)
al,, = a;._l_% + 2F(aiyq)dz

where the subscript refers to time level, F' is the total force (including focusing, self-
fields, and emittance), and dz is the step size in z. The steps for the y envelope are
the same but advance b and &'. At the entrance and exit of a quadrupole, the focusing
field that is applied to the envelope is adjusted by the amount of the step within the
quadrupole. The idea is the same as residence correction done in the particle advance.

Along with the envelope, four test particles are advanced through the focusing
fields. Two of the particles do not feel the self-fields. They are used to calculate the
undepressed tune shift. Two do feel the self-fields. They are used to calculate the
depressed tune shift. For both pairs, one of the particles has the same starting point
as the envelope, the other starts on axis with a transverse angle of 1 radian. The
transfer matrix calculated from these points is used to calculate the tune shift. If
(%o, %) is the starting point, and (zy, 2 is a final point, the following equation can

) _ mip My Tyf (A 7)
.f’o mo1 Mg fﬂ} )

The matrix M is the transfer matrix. The transfer matrix can be solved for with

be written.

the above equation known for two particles (two particles are needed to give four
equations to calculate the four matrix elements). Once the transfer matrix is known,
the tune shift, o, can be calculated since

1 1
cos o = §Tr(M) = §(m11 + myy), (A.8)



APPENDIX A. ENVELOPE CALCULATION 118

where Tr means trace. Derivation of this relation can be found in most books on
accelerator physics, for example reference [14].

Generally, it is desirable to load a beam that is matched, i.e. with the envelope
parameters the same after one lattice period. As a check on how well-matched the
envelope is, the differences of the envelope parameters after one lattice period are
calculated and printed. The code offers no method to directly calculate a set of
matched parameters, but does have a multidimensional minimization routine that
searches for matched parameters. The method used is the “amoeba algorithm” from

11].
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Appendix B

Behavior of a Beam in Pure
Non-Linear Fields

The behavior of a beam in pure, non-linear fields was examined as an aside to the
ESQ injector simulations. The beams in the presence of fourth order fields and the
dodecapole fields were simulated.

The fourth order field whose effect is simplest to describe is the Vi, fields. The
potential and electric field are given by

a2 = Viar? cos 20 = V42($4 - 3/4)
E, = —Viia® (B.1)
Ey - —I_‘/424y3

The x electric field is independent of y so particles at all y experience the same
deflection in . Likewise for the y electric field which is independent of x. The effect
on trace space is to produce a bent curve. Figure B.1 shows the effect on a beam
which is very cold in the transverse direction. Trace space remains a line but particles
with positive & are pushed negative, particles with negative z are pushed positive,
and vice versa for y.

With the components V,y and Vjy4, the fields are not independent of the perpen-
dicular direction as in Vj,. The pure octopole potential and fields are given by

baq = Viurtcos40 = Viy(z* + y* — 62%y?)
E, = Vu(12zy* — 427) (B.2)
B, = Vi(12y2? — 4y°).

Here, the z electric field is a function of both x and y, so particles with varying y will
be in a different field. This has the effect of spreading the distribution in trace space.
Figure B.2 shows the effect of a pure octopole field on a cold beam. The particles
along the x axis (y = 0) feel the same field as from the Vi, field and so lie on the same
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Figure B.1: Effect of V3 on a cold beam.
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line as in  — 2’ space in B.1. For particles which have nonzero y, though, the electric
field is diminished by the term 12zy? and so are not deflected as much. Further away
from the z axis, the term 122y? becomes greater than 422, and particles are deflected
the other way. The “lobes” cross the x axis.

The potential and fields of V,q are given by

b0 = Vior* = Vio(a* + 22%y* + y*)
E, = Vi(—42® — 4ay?) (B.3)
E, = Vi(—4y® — 4yz?).

Again, the z electric field is a function of both  and y, but now, both terms have
the same sign. Figure B.3 shows the effect on a cold beam. The particles along the
x axis follow the same line as above in  — 2’ space. Particles off the z axis have the
field increased by the 4yz? term and are deflected more. A straight line appears in
trace space. These are the particles that are on the edge of the beam. Their position
in y is given by (a* — xz)%, so

E, = Vio(—42® — 4z(a® — 2?%)) (B.4)

which reduces to E, = Vjo(—4za?). The field is linear in z.
Finally, the behavior of a beam in a dodecapole field was examined. The potential

and fields are
des = Veer® cos 60 = Vgg(2® — 152%y? + 152%y* — ¢)
E, = Vis(—62° + 602°y* — 302y?) (B.5)
E, = Vs(6y® — 60y°z? + 30yz?).

The effect of a pure dodecapole field is shown in figure B.4. The spreading is compli-
cated. The transverse profile forms a nice hexagon.
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Figure B.2: Effect of V44 on a cold beam.
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